
Hardware Support for Durable Atomic Instructions
for Persistent Parallel Programming [1]

Khan Shaikhul Hadi
University of Central Florida

shaikhulhadi@ucf.edu

Naveed Ul Mustafa
University of Central Florida
unknown.naveedulmustafa@ucf.edu

Mark Heinrich
University of Central Florida

heinrich@ucf.edu

Yan Solihin
University of Central Florida

yan.solihin@ucf.edu

MOTIVATION

please click here for the PDF of original paper.
Atomic instructions like compare and swap (CAS), fetch

and op , atomic exchange, etc. are immensely useful for
higher-level synchronization and for supporting lock-free data
structures as they serve at least three primary functions. First,
they provide a high-performance alternative to locks . Second,
they are foundational building blocks for constructing higher-
level synchronization primitives. Finally, they are essential
primitives for developing lock-free data structures [2], [3], in
particular CAS. However, absence of durable version of atomic
instructions makes it challenging to support the three primary
functions above for persistent data.

1 if(CAS(&last->next,next,new_node)){
2 CLFLUSH(&last->next);
3 FENCE;}

Listing 1: A compare-and-swap is followed by cache line
flush and fence to persist lock free data structure update [4].

Listing 1 [4] illustrate the code snippet for node insertion
on a lock-free linked-list. Each update step (line 1) performs a
CAS followed by a persist step (i.e., CLFLUSH and FENCE)
on lines 2-3. Figure 1a illustrates where two threads (A and
B) are attempting to simultaneously insert nodes 2 and 3,
respectively, using the code in Listing 1. Suppose that the
CASes have been executed atomically, resulting in successful
insertion of node 2 1 followed by insertion of node 3, reflected
in the volatile caches. Next, suppose that thread B’s flush
and fence are completed 2 which makes node 3’s insertion
durable, but a power failure occurs before thread A’s flush and
fence are completed. Hence, thread A’s change to node 1’s
next pointer is lost. Figure 1b shows the state of the linked
list upon crash recovery, where nodes 2 and 3 have been lost.

Fundamentally, the problem arises because update and
persist are not atomic as they are performed by different in-
structions. There are currently no satisfactory solutions for the
problem. In this paper, we propose a new approach: durable
atomic instructions (DAIs). DAIs are the durable version of
atomic instructions, guaranteeing both atomicity and persis-
tency. To support DAIs, we extend cache coherence protocol
mechanisms that already exist for atomic instructions, resulting
in a modified MESI protocol (which we refer as durMESI) .
Our proposed DAIs require minor hardware modification, no
significant application modifications, no crash recovery code,

1 4
2 3

Thread A Thread B

1

1

2
2

(a)

1 4
2 3

(b)

Volatile pointer Durable pointer

Fig. 1: The problem with the use of current atomic instructions
on persistent data. (a) shows concurrent insertions by threads
A and B, while (b) shows a possible crash inconsistent state.

Thread exec

CAS

flushed

fenced

Visible, 
Not 

persisted

Visible &
persisted

T0 T1
e0

CAS
e1

CAS

Crash

Thread exec

durCAS

Visible 
& persisted

T0 T1

e0
durCAS

e1
durCAS

Crash
Inconsistent

state
Consistent

state

(a) (b) (c) (d)

Fig. 2: How traditional compare-and-swap (CAS) violates
crash consistency ((a) & (b)), compared to how durable CAS
(durCAS) preserves crash consistency ((c) & (d)).

no need for abort and retry, or alternative code to guarantee
forward progress while preserve atomic instruction’s semantics
and add durability/persistency.

DESIGN OF DURABLE ATOMIC INSTRUCTIONS (DAIS)
A. Correctness Criteria and Design Principles

Figure 2(a) illustrates the timeline of thread execution using
code from listing 1. At the completion of CAS, the updated
data is visible but not yet persisted, until CLFLUSH is com-
pleted. This could lead crash consistency violation illustrated
in Figure 2(b). Thread T1 consumes data in e1 produced by
thread T0 in e0, resulting dependence relationship as e0 −→ e1.
As stated in [5], persist order must adhere to e0 −→ e1 as
well which cannot be guaranteed with CAS and flush/fence as
separate instructions.

DAIs achieve persistence and visibility in a single instruc-
tion (Figure 2(c,d)) to ensures durability when data is visible
to other core, hence a consistent state is achieved when
a crash occurs. To achieve the visible-after-persist property,
DAIs should perform the following atomically: (1) send data
update to the persistence domain, (2) receive acknowledgment

https://drive.google.com/file/d/1fB5vAyHbSYq-pEAOpYyMGFqdiasQbk-U/view?usp=sharing


from the persistence domain of its receipt, and (3) allow
visibility of the new data. These steps ideally should be
achieved with minimal hardware changes and be simple to
adapt across different platforms. For programmability, DAIs
should preserve the interface of atomic instructions, adding
only durability to their semantics.

After exploring different approaches of atomic instruction
implementation, we choose to rely on cache coherence proto-
col to implement DAIs as it is scalable & require minimum
hardware changes. The basic mechanism for atomic instruction
is to reserve the involved cache block in private cache of the
core that executes the instruction, and refuse intervention/in-
validation requests made by other cores until the instruction is
completed, after which the reservation is released. We observe
that this mechanism can be extended to support DAIs, simply
by extending the reservation until a block has been persisted.

B. Durable MESI (durMESI) Protocol

To illustrate the needed modification, we will discuss a
design built on top of the MESI protocol. We refer to our
protocol as durMESI. Figure 3 shows process side finite
state diagram of our durMESI cache coherence protocol, with
additions over MESI shown in blue and red. For simplicity, the
diagram assumes multiple cores sharing a bus that connects
private caches. The notations follow from [6].

PrRd/BusRd(C)


PrRd/-

PrRdX/-

PrWr/-


PrRd/-

PrDurRd/BusUpgr


PrWr/BusRdX

PrRdX/BusRdX


PrRdX/-


PrWr/-


PrRd/-


PrCmpFail/-

PrDurRd/BusRdX


I

EP1EP2 S

PrRd/BusRd(!C)
E

MP2 M

M
em

A
ck/-


MP1

M
em

A
ck

/-


PrCmpFail/-

PrDurRd/-


PrDurRd/-


FlushClean/-


Pr
R

dX
/B

us
U

pg
r


Pr
W

r/B
us

U
pg

r


FlushClean/-


Fig. 3: durable MESI protocol (durMESI). Process Signal.

To support DAIs, we add four transient states, Exclusive-
to-be-Persisted (EP1 and EP2) and Modified to-be-Persisted
(MP1 and MP2), and new core-generated signals correspond-
ing to the execution of DAIs, namely PrDurRd. We need
PrDurRd instead of reusing PrRdX, because the final state is
different (E vs. M). PrCmpFail is specific to durCAS to indi-
cates that the comparison did not yield a match. The MemAck
signal is generated by the persistence domain indicating the
receipt of the flushed cache block.

Suppose a block is initially uncached or cached with invalid
(I) state. The execution of durCAS results in PrDurRd being
sent to the private cache’s coherence controller (CC) which
posts BusRdX on the bus, and transitions to EP1. After
receiving a response with the data block, read-modify-write
is performed in EP1. Then the CC clean-flushes the updated

block to the persistence domain and transitions from EP1
to EP2. Upon receiving the flushed block, the persistent
domain replies with a MemAck signal so that the CC could
conclude that the block has persisted and transitions from
EP2 to Exclusive. Note that for durCAS comparison fail,
we let the CC know through PrCmpFail, resulting transitions
to Exclusive directly, skipping the flushing. If initial state is
Modified, PrDurRd trigger transition to MP1 instead of EP1
to prevent transition to Exclusive state upon PrCmpFail as
the block may be dirty. While a block is in our proposed
transient state, any snoop request will not be served, thus
prevents global visibility until durability is guaranteed.

EVALUATION

DAI have two advantages over atomic instruction followed
by flush and fence (ACF):(1) fewer dynamic instructions and
(2) reliance on clean flushing helps keeping data with high
locality in the cache. However, DAI locks a cache block for
longer time than a regular atomic instruction, which forces
other cores wishing to access the same block wait longer time
which we refer as cache block contention (CBC).

FM
M

Oce
an
−C

Oce
an
−N

Rad
ix

Ray
tra

ce

W
ate

r−
SP

Geo
mea

n

N
or

m
al

iz
ed

 E
xe

c 
T

im
e ACF

DAI

0.0

0.5

1.0

1.5

Barn
es

Cho
les

ky FFT

Fig. 4: Execution time of ACF vs. DAI (lower is better),
normalized to that of ACF.

Figure 4 shows the execution time of DAI on durMESI,
normalized to atomic instruction with ACF for Splash-4 [7]
benchmarks on 16 threads. On average, DAIs show 6.4%
speedup over ACF, besides achieving crash consistency. For
some benchmarks (Ocean-Cont and Ocean-Non), DAI per-
forms significantly better, but performs significantly worse for
Raytrace due to significantly higher CBC. Scalability of DAIs
and ACF are comparable with DAIs outscaling ACF in Ocean-
Non and vice versa for Raytrace.

REFERENCES

[1] Khan Shaikhul Hadi, Naveed Ul Mustafa, Mark Heinrich, and Yan
Solihin. Hardware support for durable atomic instructions for persistent
parallel programming. In 2023 60th ACM/IEEE Design Automation
Conference (DAC), pages 1–6, 2023.

[2] T. L. Harris. A pragmatic implementation of non-blocking linked-lists.
In DISC, 2001.

[3] M. Friedman, M. Herlihy, V. Marathe, and E. Petrank. A persistent lock-
free queue for non-volatile memory. In ACM SIGPLAN Not., 2018.

[4] W. Wang and S. Diestelhorst. Persistent atomics for implementing durable
lock-free data structures for non-volatile memory (brief announcement).
In ACM SPAA, 2019.

[5] A. Joshi, V. Nagarajan, et al. Efficient persist barriers for multicores. In
ACM MICRO, 2015.

[6] Yan Solihin. Fundamentals of Parallel Multicore Architecture. CRC
Press, 2015.

[7] E. J. Gómez-Hernández, R. Shao, et al. Splash-4: Improving scalability
with lock-free constructs. In IEEE ISPASS, 2021.


	Correctness Criteria and Design Principles
	Durable MESI (durMESI) Protocol
	References

