
Fast Enclave Launch: Efficient Enclave Launching for
Secure Serverless Cloud Computing

Sadman Sakib Akash, Naveed Ul Mustafa, and Yan Solihin
University of Central Florida, Orlando, FL

Introduction

Serverless Computing:

Applications are decomposed into

independent and stateless functions

and events [1].

Function execution is triggered by

event(s), e.g., HTTP requests.

Cloud provider manages the resources,

without involvement of the application

developer [2].

What if client trusts only its own

functions and nothing else (i.e., OS,

hypervisor, other applications running

on the cloud server)?

FaaS Needs Security Protection:

Memory Integrity

Memory encryption

Replay attack

Enclave:

A hardware enclave (e.g., intel SGX)

allocates a set of physical addresses

accessible only from the program.

Enclave can be used to isolate a

function’s execution from

system/application software.

Motivation

Multiple but identical functions to serve multiple requests.

One enclave per function for security protection.

Function have typically short life cycle (<1s).

A few seconds to create an enclave [3].

Enclave initialization cost = Copy Latency + Measurement Latency.

Problem Statement

“Enable security protections for serverless computing with a lower enclave initial-

ization cost”

Approach

Avoid the Measurement Latency:

Create, attest and save a template

enclave.

Instantiate child enclaves by copying

template into children.

Attest once, use multiple times.

Lower the Copy Latency:

Avoid page table walk, when possible,

during copy operation.

Copy on demand and at finer

granularity.

Threat Model

Attacker: Cloud Service Provider,

Function Provider.

Goal of Attacker: Break confidentiality

or alter the state of the program

Attacker can control privileged

software, tamper in-memory values,

and perform physical attack.

Attacker cannot access on-chip caches

or registers.

Enclave Memory Encryption

Encrypt/Decrypt data blocks crossing secure chip-boundary.

Ciphertext = Plaintext ⊕ OTP

OTP = Block_Cipher(Seed, SecretKey)
Seed = PageAddress + BlockOffset + Counter + Padding

Block-level counter is incremented each time block is written to memory

Enclave Memory Integrity

Data blocks are protected by their MAC.

MAC computed over counter, physical address and data of a block.

Bonsai Merkel Tree (BMT) built only over counters.

Root hash is kept on-chip, protected from attackers

Figure 1. Bonsai Merkle Tree.[4]

Base Design

Full Enclave CopyWithout Page Table

Contiguous and memory resident template enclave.

Decrypt all data blocks from template and copy them in child as dirty.

Build child's page table during copy operation.

Counters remain unchanged for the child.

Compute BMT root for child and compare with that of the template.

Child's MACs will be recomputed with new address (same counter)

Pros:

+ Avoid attestation

+ No Page Table Walk (PTW) over

template

Cons:

- Template must be resident/contiguous

- High copy latency

EID Root Base Range Ready Execute Pin ParentID

124 x B1 R1 1 1

366 x CR3 0 0 124

Table 1. Enclave Table for Base Design.

Figure 2. Block Diagram for Full Enclave Copy.

Full Copywith Page Table

Walks template's page table for copying each page

Pros:

+ Template enclave does not need to be

contiguous or memory resident

Cons:

- Copies everything, not selective

- High copy latency

Page Level Copywith Page Table

Child copies only accessed-pages from template.

Child's PT is updated.

Child's MAC are computed using new address.

Child’s BMT is computed using split counters i.e., some in child (for copied pages),

and some in template (for non-copied) pages.

Pros:

+ Fast enclave start

+ Memory efficient

Cons:

- Needs to track counter location.

- Re-encryption of full page could be

slow

EID Root Ready Execute Pin Page Table

124 x 1 1 Ptr to CR3

366 x 0 0 ||

Table 2. Enclave Table for Page-Level Copy

References

[1] Theo Lynn, Pierangelo Rosati, Arnaud Lejeune, and Vincent Emeakaroha. A preliminary review of enterprise

serverless cloud computing (function-as-a-service) platforms. In 2017 IEEE International Conference on Cloud

Computing Technology and Science (CloudCom), pages 162–169. IEEE, 2017.

[2] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. Architectural implications of function-as-a-service

computing. In Proceedings of the 52nd annual IEEE/ACM international symposium on microarchitecture, pages

1063–1075, 2019.

[3] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo Chen. Scalable memory

protection in the {PENGLAI} enclave. In 15th {USENIX} Symposium on Operating Systems Design and Implementation

({OSDI} 21), pages 275–294, 2021.

[4] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin. Using address independent seed encryption and

bonsai merkle trees to make secure processors os-and performance-friendly. In 40th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO 2007), pages 183–196. IEEE, 2007.

[5] Dayeol Lee, Kevin Cheang, Alexander Thomas, Catherine Lu, Pranav Gaddamadugu, Anjo Vahldiek-Oberwagner,

Mona Vij, Dawn Song, Sanjit A Seshia, and Krste Asanovic. Cerberus: A formal approach to secure and efficient

enclave memory sharing. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications

Security, pages 1871–1885, 2022.

https://seed-symposium.org/2024/ International Symposium on Secure and Private Execution Environment Design 2024, Orlando, Florida Email: sa717931@ucf.edu

https://seed-symposium.org/2024/
mailto:sa717931@ucf.edu

