Introduction

Serverless Computing: FaaS Needs Security Protection:

= Applications are decomposed into = Memory Integrity
independent and stateless functions
and events [1].

= Memory encryption

= Replay attack
= Function execution is triggered by

event(s), e.g., HTTP requests. Enclave:

= Cloud provider manages the resources,
without involvement of the application = A hardware enclave (e.g., intel SGX)
developer [2]. allocates a set of physical addresses

= What if client trusts only its own accessible only from the program.

functions and nothing else (i.e., OS,
hypervisor, other applications running
on the cloud server)?

= Enclave can be used to isolate a
function’s execution from
system/application software.

Motivation

= Multiple but identical functions to serve multiple requests.

= One enclave per function for security protection.

= Function have typically short life cycle (<15s).

= A few seconds to create an enclave [3].

= Enclave initialization cost = Copy Latency + Measurement Latency.

Problem Statement

Secure Serverless Cloud Computing

Sadman Sakib Akash, Naveed Ul Mustafa, and Yan Solihin

University of Central Florida, Orlando, FL

Enclave Memory Integrity

= Data blocks are protected by their MAC.
= MAC computed over counter, physical address and data of a block.

= Bonsai Merkel Tree (BMT) built only over counters.

= Root hash is kept on-chip, protected from attackers
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Figure 1. Bonsai Merkle Tree.[4]

Base Design

Full Enclave Copy Without Page Table

= Contiguous and memory resident template enclave.

= Decrypt all data blocks from template and copy them in child as dirty.

= Build child's page table during copy operation.

= Counters remain unchanged for the child.

“Enable security protections for serverless computing with a lower enclave initial-
ization cost”

Approach

Avoid the Measurement Latency: Lower the Copy Latency:

= Create, attest and save a template
enclave.

= Avoid page table walk, when possible,
during copy operation.

= Copy on demand and at finer
granularity.

= [nstantiate child enclaves by copying
template into children.

= Attest once, use multiple times.

Threat Model

= Attacker can control privileged
software, tamper in-memory values,
and perform physical attack.

= Attacker: Cloud Service Provider,
Function Provider.

= Goal of Attacker: Break confidentiality

or alter the state of the program = Attacker cannot access on-chip caches

or registers.
Enclave Memory Encryption

= Encrypt/Decrypt data blocks crossing secure chip-boundary.

= Ciphertext = Plaintext & OTP

= OTP = Block_Clipher(Seed, Secret Key)

= Seed = PageAddress + BlockO f fset + Counter + Padding

= Block-level counter is incremented each time block is written to memory
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= Compute BMT root for child and compare with that of the template.

= Child's MACs will be recomputed with new address (same counter)

Pros:
+ Avoid attestation

+ No Page Table Walk (PTW) over

Cons:

- Template must be resident/contiguous

- High copy latency
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Table 1. Enclave Table for Base Design.
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Figure 2. Block Diagram for Full Enclave Copy.
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Fast Enclave Launch: Efficient Enclave Launching for

Full Copy with Page Table

Walks template's page table for copying each page

Cons:
Template enclave does not need to be
contiguous or memory resident

- Copies everything, not selective

- High copy latency

Page Level Copy with Page Table

Child copies only accessed-pages from template.
Child's PT is updated.
Child's MAC are computed using new address.

Child’s BMT is computed using split counters i.e., some in child (for copied pages),
and some in template (for non-copied) pages.

Cons:

Fast enclave start - Needs to track counter location.

- Re-encryption of full page could be

Memory efficient
slow
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Table 2. Enclave Table for Page-Level Copy
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