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Introduction

Serverless Computing:

Applications are decomposed into

independent and stateless functions

and events [1].

Function execution is triggered by

event(s), e.g., HTTP requests.

Cloud provider manages the resources,

without involvement of the application

developer [2].

What if client trusts only its own

functions and nothing else (i.e., OS,

hypervisor, other applications running

on the cloud server)?

FaaS Needs Security Protection:

Memory Integrity

Memory encryption

Replay attack

Enclave:

A hardware enclave (e.g., intel SGX)

allocates a set of physical addresses

accessible only from the program.

Enclave can be used to isolate a

function’s execution from

system/application software.

Motivation

Multiple but identical functions to serve multiple requests.

One enclave per function for security protection.

Function have typically short life cycle (<1s).

A few seconds to create an enclave [3].

Enclave initialization cost = Copy Latency + Measurement Latency.

Problem Statement

“Enable security protections for serverless computing with a lower enclave initial-

ization cost”

Approach

Avoid the Measurement Latency:

Create, attest and save a template

enclave.

Instantiate child enclaves by copying

template into children.

Attest once, use multiple times.

Lower the Copy Latency:

Avoid page table walk, when possible,

during copy operation.

Copy on demand and at finer

granularity.

Threat Model

Attacker: Cloud Service Provider,

Function Provider.

Goal of Attacker: Break confidentiality

or alter the state of the program

Attacker can control privileged

software, tamper in-memory values,

and perform physical attack.

Attacker cannot access on-chip caches

or registers.

Enclave Memory Encryption

Encrypt/Decrypt data blocks crossing secure chip-boundary.

Ciphertext = Plaintext ⊕ OTP

OTP = Block_Cipher(Seed, SecretKey)
Seed = PageAddress + BlockOffset + Counter + Padding

Block-level counter is incremented each time block is written to memory

Enclave Memory Integrity

Data blocks are protected by their MAC.

MAC computed over counter, physical address and data of a block.

Bonsai Merkel Tree (BMT) built only over counters.

Root hash is kept on-chip, protected from attackers

Figure 1. Bonsai Merkle Tree.[4]

Base Design

Full Enclave CopyWithout Page Table

Contiguous and memory resident template enclave.

Decrypt all data blocks from template and copy them in child as dirty.

Build child's page table during copy operation.

Counters remain unchanged for the child.

Compute BMT root for child and compare with that of the template.

Child's MACs will be recomputed with new address (same counter)

Pros:

+ Avoid attestation

+ No Page Table Walk (PTW) over

template

Cons:

- Template must be resident/contiguous

- High copy latency

EID Root Base Range Ready Execute Pin ParentID

124 x B1 R1 1 1

366 x CR3 0 0 124

Table 1. Enclave Table for Base Design.

Figure 2. Block Diagram for Full Enclave Copy.

Full Copywith Page Table

Walks template's page table for copying each page

Pros:

+ Template enclave does not need to be

contiguous or memory resident

Cons:

- Copies everything, not selective

- High copy latency

Page Level Copywith Page Table

Child copies only accessed-pages from template.

Child's PT is updated.

Child's MAC are computed using new address.

Child’s BMT is computed using split counters i.e., some in child (for copied pages),

and some in template (for non-copied) pages.

Pros:

+ Fast enclave start

+ Memory efficient

Cons:

- Needs to track counter location.

- Re-encryption of full page could be

slow

EID Root Ready Execute Pin Page Table

124 x 1 1 Ptr to CR3

366 x 0 0 ||

Table 2. Enclave Table for Page-Level Copy
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