
Hardware Support for Durable Atomic Instructions
for Persistent Parallel Programming

Khan Shaikhul Hadi
University of Central Florida

shaikhulhadi@knights.ucf.edu

Naveed Ul Mustafa
University of Central Florida
unknown.naveedulmustafa@ucf.edu

Mark Heinrich
University of Central Florida

heinrich@ucf.edu

Yan Solihin
University of Central Florida

yan.solihin@ucf.edu

Abstract—Persistent memory is emerging as an attractive main
memory fabric capable of hosting persistent data. However,
its programmability is hampered by the lack of persistent
synchronization primitives. Atomic instructions are immensely
useful for higher-level synchronization (locks and barriers) and
for supporting lock-free data structures, but they have no
durable/persistent version. In this paper, we propose a new ap-
proach to solve the problem: durable atomic instructions (DAIs).
We show that DAIs can be supported with minor hardware
support (low-cost modifications to the cache coherence protocol),
and simultaneously achieve high performance, scalability, and
crash consistency.

I. INTRODUCTION

The introduction of Non-Volatile Memory (NVM) devices,
such as Intel Optane PMem [1], provides system designers
with the option of replacing or augmenting volatile mem-
ory with NVM. While Intel has announced discontinuation
of NVM products, alternatives are emerging, such as SLC
NAND-based memory (e.g. Kioxia FL6 [2]), as well as
ReRAM and MRAM-based memories.

Besides its non-volatility, NVM’s byte addressability and
low access latency make it attractive to host persistent data in
memory instead of storage. However, despite NVM’s potential,
taking advantage of NVM for persistent data requires high
programming effort. The programmer is expected to orches-
trate data movement from the volatile cache hierarchy to NVM
using low-level instructions such as cache line flushes and
store fences. He/she is also expected to define durable atomic
regions that mingle both concurrency and persistency. Higher
level abstraction and useful primitives that simplify persistency
programming are sorely needed.

One type of primitives that are widely relied upon by pro-
grammers are atomic instructions. An atomic instruction pro-
vides an atomic sequence of read, modify and write (RMW) on
a memory word. Examples include compare and swap (CAS),
fetch and op (such as fetch and add, fetch and increment,
etc.), atomic exchange, etc. The processor ensures that an
atomic instruction executed by one thread appears to execute
sequentially with respect to atomic instructions executed by
all other threads. As a result, atomic instructions serve at least
three primary functions. First, they provide a high-performance
alternative to locks for a critical section that only modifies a
single word. Second, they are foundational building blocks
for constructing higher-level synchronization primitives, such
as locks, barriers, etc. Finally, they are essential primitives for
developing lock-free data structures [3], [4], [5], in particular
CAS.

1 if(CAS(&last->next,next,new_node)){
2 CLFLUSH(&last->next);
3 FENCE;}

Listing 1: A compare-and-swap is followed by cache line
flush and fence to persist lock free data structure update [6].

However, currently there is no durable version of atomic
instructions. This makes it challenging to support the three
primary functions above for persistent data. To illustrate this,
consider the code snippet for node insertion on a lock-free
linked-list in Listing 1 [6]. Each update step (line 1) performs
a CAS, and is followed by a persist step (i.e., CLFLUSH and
FENCE) on lines 2-3. The CLFLUSH evicts a memory block
from volatile caches to the NVM, while the FENCE provides a
persist barrier by ensuring that the flush reaches the persistence
domain before new reads/writes are allowed to persist.

1 4
2 3

Thread A Thread B

1

1

2
2

(a)

1 4
2 3

(b)

Volatile pointer Durable pointer

Fig. 1: Illustrating the problem with the use of current atomic
instructions on persistent data. (a) shows concurrent insertions
by threads A and B, while (b) shows a possible crash incon-
sistent state.

Figure 1a illustrates a lock-free linked list, where two
threads (A and B) are attempting to simultaneously insert
nodes 2 and 3, respectively, using the code in Listing 1. Sup-
pose that the CASes have been executed atomically, resulting
in successful insertion of node 2 1 followed by insertion of
node 3, reflected in the volatile caches. Next, suppose that
thread B’s flush and fence are completed 2 which makes node
3’s insertion durable, but a power failure occurs before thread
A’s flush and fence are completed. Hence, thread A’s change to
node 1’s next pointer is lost in the volatile caches. Figure 1b
shows the state of the linked list upon crash recovery, where
nodes 2 and 3 have been lost.

Fundamentally, the problem arises because update and
persist are not atomic as they are performed by different

20
23

 6
0t

h
A

C
M

/IE
EE

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(D
A

C
) |

 9
79

-8
-3

50
3-

23
48

-1
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

A
C

56
92

9.
20

23
.1

02
47

72
9

Authorized licensed use limited to: University of Central Florida. Downloaded on January 14,2024 at 17:04:31 UTC from IEEE Xplore. Restrictions apply.

instructions. There are currently no satisfactory solutions for
the problem. One could wrap the entire node insertion code
with a durable transaction memory (DTM) [7]. However, DTM
is intended to replace the use of locks, hence it requires
heavy duty hardware support with substantial changes to the
processor and cache designs. In contrast, an atomic instruction
is a building block for synchronization primitives including
locks. Furthermore, DTM semantics require abort and retry to
be supported, whereas an atomic instruction does not. Finally,
DTM is built on top of TMs, and most commercial TMs are
best effort as they provide no guarantee that a transaction
will always commit. In contrast, atomic instructions will
always complete. Software approaches like PMCAS [8] and
PMwCAS [9] keep a log of memory information to ensure
that data can be recovered on a crash and prevent other threads
from reading non-persistent data by enforcing a flush-on-read
mechanism. While they could work, they are overkill, as they
require crash recovery code to be developed, and incur a
significant performance loss due to the overhead involved in
reading and the additional cache line flushes.

In this paper, we propose a new approach to the problem:
durable atomic instructions (DAIs). DAIs are the durable
version of atomic instructions, guaranteeing both atomicity and
persistency. DAIs ensure that a word that becomes globally
visible (to other threads) has persisted. To support DAIs, we
extend cache coherence protocol mechanisms that already exist
for atomic instructions, resulting in a modified MESI protocol
(which we refer as durMESI) that combine atomicity and
persistence required for DAIs.

Our proposed DAIs provide multiple advantages. First,
DAIs require only minor hardware modification to the cache
coherence protocol. Second, DAIs do not require significant
application modifications as applications can simply replace
atomic instructions with DAIs in their code, and the re-
placement can be automated by the compiler. This is in
contrast to PMCAS [8] and PMwCAS [9] which add many
instructions and require additional application modifications
and correctness reasoning effort. Finally, DAIs preserve atomic
instructions’ semantics but add durability/persistency, which is
a key to DAIs’ simplicity. DAIs do not require crash recovery
code, do not need abort and retry, or alternative code to
guarantee forward progress.

To summarize, our work makes the following contributions:

1) We propose DAIs, a novel persistent version of atomic
instructions, as primitives that provide building blocks
for other synchronization primitives and lock-free data
structures.

2) We present modifications to cache coherence protocols
to enable DAIs in MESI, which we refer to as the
durMESI protocol.

3) We evaluate DAIs using Splash-4 parallel benchmarks
that use lock-free data structures. Our results show that
on average, DAI 6.4% faster than regular atomic instruc-
tions with flush and fence and comparable scalability,
while at the same time provide crash-consistency that
the latter does not.

II. BACKGROUND AND RELATED WORK

A. Persistency Management Instructions

At the instruction set level, Intel x86 provides cache line
flush instructions (CLFLUSH, CLFLUSHOPT and CLWB)
to flush/write back data to main memory, and memory or
store fence instructions (MFENCE, SFENCE) to enforce or-
dering [10]. Together, cache line flush and fence form a persist
barrier. In the ARM instruction set [11] similar instructions are
provided (DC CVAP, DC CVADP for durability and DSB as
a persist barrier). These instructions could be used directly by
the programmer or by a persistent programming library such
as Intel PMDK [12]. These instructions manage persistency
but not atomicity.

B. Software-Based Atomicity of Update and Persistency

Recent works such as PMCAS [8] and PMwCAS [9]
proposed the design of multiword crash consistent CAS. For
each word in a multiword frame, they designate an unused
address bit of the word as a persistency marker. The bit is
set to 1 on updating the word, indicating that the update is
not yet persisted and reads are not allowed. The bit is cleared
after persisting the update. Furthermore, frame-level metadata
is maintained to monitor whether all words have been suc-
cessfully persisted or not to support recovery in the event of a
crash. When a thread requests an updated but not-yet persisted
word, it must wait for the word to become persistent. In doing
so, as a by-product, they provide an illusion of atomicity for
the update and persist steps. Both approaches use expensive
cache line flush and fence instructions to persist words in
NVM. Additionally, they maintain metadata for each word to
support crash recovery and require application modifications
to include library calls. While the approach can be used for
achieving a durable atomic single-word CAS, it is overkill due
to requiring crash recovery code, extra metadata management,
and reliance on expensive flush and fence instructions. In
contrast, our DAIs do not require any metadata, crash recovery
code, and provide just-enough hardware modifications for a
single word CAS.

III. DESIGN OF DURABLE ATOMIC INSTRUCTIONS (DAIS)

A. Correctness Criteria and Design Principles

To understand the correctness criteria DAIs must meet,
let us first consider how regular atomic instructions violate
crash consistency. Figure 2(a) illustrates the timeline of thread
execution, with a sequence of compare and swap instruction
(CAS), cache line flush (CLFLUSH), and fence (Listing 1). At
the completion of CAS, the updated data is visible (to other
threads) but not yet persisted, until CLFLUSH is completed, at
which time the update is both visible and persisted. Figure 2(b)
illustrates a case where crash consistency is violated. It shows
the execution of two threads (T0 and T1) with T0 performing
CAS (epoch e0), with the updated value consumed by T1
which performs its own CAS (epoch e1). Similar to the
correctness requirement in durable transactions [13], we can
think of each CAS execution as an epoch. Since T1 consumes
data in e1 produced by T0 in e0, we denote the dependence

Authorized licensed use limited to: University of Central Florida. Downloaded on January 14,2024 at 17:04:31 UTC from IEEE Xplore. Restrictions apply.

Thread exec

CAS

flushed

fenced

Visible,
Not

persisted

Visible &
persisted

T0 T1
e0

CAS
e1

CAS

Crash

Thread exec

durCAS

Visible
& persisted

T0 T1

e0
durCAS

e1
durCAS

Crash
Inconsistent

state
Consistent

state

(a) (b) (c) (d)

Fig. 2: Illustrating how traditional compare-and-swap (CAS)
instruction violates crash consistency ((a) and (b)), compared
to how durable CAS preserves crash consistency ((c) and (d)).

relationship as e0 −→ e1. As stated in [13], persist order must
adhere to e0 −→ e1 as well, meaning that T1’s CAS cannot
persist before T0’s CAS. However, with CAS and flush/fence
as separate instructions, such a property cannot be guaranteed.
CLFLUSH of T1 may be executed earlier than the CLFLUSH
of T0, which means that T1 persisted value that was produced
but not persisted yet by T0. If there is a crash at this point,
an inconsistent state results.

DAIs achieve persistence and visibility in a single instruc-
tion. Figure 2(c) shows a durCAS, the durable version of
atomic instruction CAS. durCAS persists an update first before
allowing it to be visible to other threads. By the time the value
is visible to (and consumed by) T1’s durCAS (Figure 2(d)),
it was already persisted, hence a consistent state is achieved
when a crash occurs.

To achieve the visible-after-persist property, our DAIs
should perform the following atomically: (1) send data update
to the persistence domain, (2) receive acknowledgment from
the persistence domain of its receipt, and (3) allow visibility
of the new data. These steps ideally should be achieved with
minimal hardware changes and be simple to adapt across dif-
ferent platforms. For programmability, DAIs should preserve
the interface of atomic instructions, adding only durability to
their semantics.

B. Semantics of DAIs

Our proposed DAIs preserve the interface and functionality
of as atomic instructions but add durability. Table I lists
atomic instructions and their DAI counterparts. For example,
CAS(A,$1,$2) reads a value from address A, if it is equal to
the value in register $1, writes the value in register $2 to A.
In contrast, durCAS(A,$1,$2) additionally persists the value
in register $2 to A.

Note that different platforms may define different persis-
tence domains. For example, some platforms may include
only the main memory and memory controller’s write pending
queue (WPQ) in the persistence domain (e.g. Intel ADR),
but other platforms may include the entire cache hierarchy
in the persistence domain (e.g. Intel eADR). DAI semantics
are independent of the persistence domain scope, and the
mechanism of persistence is decoupled from the semantics.
Thus, DAIs semantics make them easy to port across various
platforms.

TABLE I: Semantics of DAIs. $ denotes a register. Parantheses
denote additional semantics added by DAIs for compare-
and-swap (CAS), fetch-and-add (FAA), fetch-and-sub (FAS)
and test-and-set (TAS) instructions. For brevity, fetch-and-
or/and/xor/nand are omitted.

Atomic Inst DAI Semantics
CAS(A,$1,$2) durCAS(A,$1,$2) read value from address A, if

equals to $1, write (and persist) $2
to A

FAA(A,$1) durFAA(A,$1) read value from address A, add it
by $1, write (and persist) the result
to A

FAS(A,$1) durFAS(A,$1) read value from address A, subtract
it by $1, write (and persist) the
result to A

TAS(A,$1) durTAS(A, $1) read value from address A, write
(and persist) $1 to A, put old value
of A in $1

C. Approaches to Architecture Support for DAIs

Recall that one of our design principles is to keep hardware
changes to a minimum, and make it adaptable across different
platforms. With this principles in mind, we consider several
ways atomic instructions are currently implemented.

One method is to lock the bus, e.g. x86 LOCK prefix, so that
no two atomic instructions can access the memory at the same
time. However, this method has several substantial drawbacks.
First, it slows down execution in all cores, even those that do
not use atomic instructions. Second, it is not scalable, and
harder to design as the number of cores increases as buses are
replaced with point-to-point interconnects.

Another method for implementing atomic instructions is to
rely on a lower-level primitive, a pair of load-linked (LL)
and store conditional (SC) instructions. The pair provides an
illusion of atomicity. LL/SC pair is available in MIPS, ARM
(ldrex/strex), and PowerPC (lwarx/stwcx) instruction
sets. LL reads a word from memory, and records the address in
a special register. If an invalidation or intervention message is
received to the address (indicating another core reads or writes
to it), then the illusion is broken and the register is cleared,
causing the subsequent SC to fail. SC succeeds only when no
other cores interfere between the LL and SC. While LL/SC
is efficient, it cannot be used for DAIs, because DAIs require
flushing data to memory, but flushing goes beyond the core
control and hence cannot be canceled by the core.

The final method for implementing atomic instructions is to
rely on cache coherence protocol support. The basic mecha-
nism is to reserve a block involved in an atomic instruction
in the private cache of the core that executes the instruction,
and refuse intervention or invalidation requests made by
other cores until the instruction is completed, after which
the reservation is released. We observe that this mechanism
can be extended to support DAIs, simply by extending the
reservation until a block has been persisted. Considering that
the additional hardware complexity for supporting DAIs is
small, we choose this method.

Authorized licensed use limited to: University of Central Florida. Downloaded on January 14,2024 at 17:04:31 UTC from IEEE Xplore. Restrictions apply.

D. Durable MESI (durMESI) Protocol
To illustrate the modification that need to be made to the

cache coherence protocol, we will discuss a design built on
top of the MESI protocol, which is the foundation of cache
coherence protocols in many platforms today. We refer to our
protocol as durMESI.

Figure 3 shows our durMESI cache coherence protocol, with
additions over MESI shown in blue and red. For simplicity, the
diagram assumes multiple cores sharing a bus that connects
private caches. The protocol is split into one where state
transitions occur because of requests made from the local core
(top) versus requests snooped on the bus originating from a
remote core (bottom). The notations follow from [14]. Notably,
each transition is shown in the format of X/Y where X is the
triggering event that causes the state transition, and Y is the
signal that results from the state transition. PrRd, PrRdX and
PrWr are signals issued by the local core due to executing a
load or a store instruction. BusRd, BusUpgr/BusRdX are bus
requests issued by the local core (top) or issued by a remote
core that were snooped on the bus (bottom), with BusRdX
additionally denoting a cache miss. Flush puts data on the bus
for other cores and writes it back to the main memory. The
local copy is either invalidated (if the final state is Invalid) or
retained as a clean copy (if the final state is Shared).

To support DAIs, we add four transient states, Exclusive-
to-be-Persisted (EP1 and EP2) and Modified to-be-Persisted
(MP1 and MP2), and new core-generated signals correspond-
ing to the execution of DAIs, namely PrDurRd. We need
PrDurRd for DAI execution, instead of reusing PrRdX, be-
cause the final state is different (E vs. M). DAI clean-flushes
(i.e. writes back but retain a copy) a block to the persistence
domain, in the process turning the block clean. Thus, the
more appropriate final state for PrDurRd is Exclusive (E).
An advantage of choosing E over M as the final stage is
that if the block is evicted, it can just be discarded, instead
of written back, which reduces bandwidth pressure to both
the last level cache (LLC) if evicted from the private cache
and to main memory if evicted from the LLC. PrCmpFail is
specific to durCAS (not needed by other DAIs), that indicates
that the comparison did not yield a match. The MemAck
signal is generated by the persistence domain, e.g. the memory
controller (MC), indicating the receipt of the flushed cache
block. Receiving MemAck confirms that durability has been
achieved.

We will now cover each initial state of a block to which
durCAS is applied to, in Figure 3 (top). Transitions in blue or
red are ones added to the MESI protocol. Suppose a block
is initially uncached or cached with invalid (I) state. The
execution of durCAS results in PrDurRd being sent to the
private cache’s coherence controller (CC). The resulting cache
miss posts BusRdX on the bus, and the state transitions to
EP1. After receiving a response with the data block (supplied
by a peer cache or the LLC/memory), DAI is performed in
EP1, e.g. for durCAS the comparison and write are performed.
Then the CC clean-flushes the updated block to the persistence
domain and transitions from EP1 to EP2. Upon receiving
the flushed block, the MC replies with a MemAck signal.

PrRd/BusRd(C)

PrRd/-
PrRdX/-
PrWr/-

PrRd/-
PrDurRd/BusUpgr

PrWr/BusRdX
PrRdX/BusRdX

PrRdX/-

PrWr/-

PrRd/-

PrCmpFail/-

PrDurRd/BusRdX

I

EP1EP2 S

PrRd/BusRd(!C) E

MP2 M

M
em

A
ck/-

MP1

M
em

A
ck

/-

PrCmpFail/-

PrDurRd/-

PrDurRd/-

FlushClean/-

Pr
R

dX
/B

us
U

pg
r

Pr
W

r/B
us

U
pg

r

FlushClean/-

(a) Process Signal

BusRdX/Flush

BusRdX/Flush

BusRd/Flush

BusUpgr/-
BusRdX/-
BusRd/-

BusRd/Flush

I

EP1EP2

E

MP2 MMP1

BusRdX/Flush
BusUpgr/-

BusRd/Flush

BusUpgr/-
BusRdX/-
BusRd/-

BusUpgr/-
BusRdX/-
BusRd/-

BusUpgr/-
BusRdX/-
BusRd/-

BusUpgr/-
BusRdX/-
BusRd/-

S

(b) Bus Signal

Fig. 3: durable MESI protocol (durMESI)

Upon receiving MemAck, the CC concludes that the block has
persisted, hence it transitions from EP2 to Exclusive. Note that
for durCAS, a non-matching comparison skips the swap/write.
To optimize for that, we let the CC know through PrCmpFail,
which transitions from EP1 directly to Exclusive, skipping the
flushing. Let us now consider other initial states. If the initial
state is Shared, the execution of DAI requires invalidation of
peer caches through BusUpgr to transition to EP1, while if the
initial state is Exclusive, no bus transaction is needed as peer
caches do not have a copy. Once in EP1, the remaining steps
are the same as in the Invalid case.

If the initial state is M, no other cached copies exist, hence
no bus transaction is triggered when transitioning from M to
MP1. The transitions of MP1 −→ MP2 −→ E are similar to EP1
−→ EP2 −→ E. One difference is when the comparison fails
(PrCmpFail). Since the block is dirty, the state must transition
back to Modified rather than Exclusive.

Figure 3 (bottom) shows the durMESI protocol reacting to
snooped requests from other cores appearing on the bus. The
modifications here are minimal, mainly that when the state is
in one of the transient states (EP1/2 or MP1/2), any external
requests are ignored, i.e. either queued to be responded after
the state transitions to a stable state, or responded with a
negative acknowledgement (requestors will then retry). While

Authorized licensed use limited to: University of Central Florida. Downloaded on January 14,2024 at 17:04:31 UTC from IEEE Xplore. Restrictions apply.

WPQ

DRAM Controller NVM Controller

DRAM NVM Pe
rs

is
te

nt
 D

om
ai

n

Memory Controller
Shared LLC

L2 L2

L1

L2

L1

Issue PrDurRd1

2 Issue BusRdX

3
Invalidation4 Lock Cache Block

5

Send Update to Persistent Domain6

MemAck 7

Unlock Cache Block
8

Issue write Core 1 Core 2

Fig. 4: Different step of DAI at hardware level

in a transient state, the block is locked (i.e., cannot be evicted)
in the private cache.

Figure 4 illustrates a system in which durMESI is applied.
The system has multiple cores with private L1 and L2 caches,
a shared LLC, and the persistence domain consisting of NVM
and write pending queue (WPQ) in the MC. Suppose Core 1
executes a DAI and issues PrDurRd 1 to the L1 cache for a
block that is not cached in the core’s L1/L2 caches, but cached
in Modified state in the second core’s L1. The first core CC
issues BusRdX to the LLC 2 , which sends an invalidation
to the second core 3 . The second peer core flushes its block
to the LLC, which forwards the block to the first core. Upon
receiving the block, the first core CC locks the block in the L1
cache in EP1/2 states 4 , and performs the atomic operation 5 .
Once completed, the block is clean-flushed to update memory
6 , and the MC replies with MemAck 7 indicating persistence
is achieved. Finally, the first core CC transitions the block to
the Exclusive state which unlocks the block in the L1 8 .

IV. EXPERIMENTAL SETUP

Simulation environment: We built a multicore system with
durMESI coherence protocol on top of Snipersim [15], a
multicore simulator with an Intel Pin front-end. The simulated
system is detailed in Table II. It is a single-socket Xeon
Nehalem-like microarchitecture with 32 cores. Cache access
latencies were obtained using CACTI [16], and NVM-DRAM
latency ratio from [17].

TABLE II: Simulation Environment

Processor 32-core (2.66 GHz each), 64-bit X86 ISA, Gainstown
architecture (Nehalem micro-arch), 45nm technology,
Pentinum M branch predictor

TLB
L1D TLB: 64 entries, 4-way;
L2 TLB: 512 entries, 4-way;
miss penalty: 30 cycle

Cache

64-bytes block, LRU replacement policy
Private L1D cache:32KB, 8-way, 4 cycle access time
Private L2 cache: 256KB, 8-way, 8 cycle access time
Shared L3 : 64MB, 16-way, 24 cycles access time

Memory Queue : 100 entry
Controller Bandwidth: 7.6 GB/s
Main Memory DRAM latency: 54ns; NVM latency: 162ns

Evaluated Workload: We used the Splash-4 [18] bench-
mark suite, which consists of high performance computing

benchmarks that have been recently adapted to use lock-free
constructs. We ported them to utilize persistent memory by
allocating the heap and all shared variables in the persistent
memory, and applying cache line flush and fence instructions
or DAIs to persistent data. For each benchmark, we simulated
the entire run but collect statistics for the parallel region of
interest (ROI). Some benchmarks that did not run correctly
were omitted.

TABLE III: Splash-4 Benchmark Suite

Benchmark Input Benchmark Input
Barnes n16384 Radix -n1048576
Cholesky tk29.O Raytrace balls4.env
FFT -m20 -l6 Water-SP -n512
FMM parsec simsmall Ocean-N -n514
Ocean-C -n514 IMAX = 4049

JMAX = 4049

Schemes Comparison: We compare DAIs against the non-
crash consistent solution with cache line flush and fence
instructions, along the line shown in Listing 1. We refer to this
solution as ACF (Atomic + CLFLUSH + FENCE). ACF does
not provide crash consistency, hence it is not a real solution
compared to DAI, however it serves as a good reference to
assess how efficiently our DAIs perform.

V. EVALUATION

FM
M

Oce
an
−C

Oce
an
−N

Rad
ix

Ray
tra

ce

W
ate

r−
SP

Geo
mea

n

N
or

m
al

iz
ed

 E
xe

c
T

im
e ACF

DAI

0.0

0.5

1.0

1.5

Barn
es

Cho
les

ky FFT

Fig. 5: Execution time of ACF vs. DAI (lower is better),
normalized to that of ACF.

Figure 5 shows the execution time of DAI on durMESI,
normalized to atomic instruction with cache line flush and
fence (ACF) for Splash-4 benchmarks on 16 threads. We
observe that on average, DAIs show 6.4% speedup (i.e., lower
execution time) over ACF, which is remarkable considering
they achieve crash consistency as well. For some benchmarks
(Ocean-Cont and Ocean-Non), DAI performs significantly
better compared to ACF, but performs significantly worse for
Raytrace.

To understand the performance better, Figure 6 (Left) shows
the dynamic percentage of atomic/DAI updates as a fraction of
total updates (atomics/DAIs plus regular stores). For Splash-4
benchmarks, atomic instructions are mostly used in barriers
for synchronization among threads. As a barrier is a global
synchronization, its execution has a significant impact on the
overall execution time of the workload. Three benchmarks
stand out over the others as having much higher fraction of
atomics (> 0.006%), which are the same benchmarks where

Authorized licensed use limited to: University of Central Florida. Downloaded on January 14,2024 at 17:04:31 UTC from IEEE Xplore. Restrictions apply.

DAIs performance diverge from ACF. DAIs have two major
advantages over ACF: (1) fewer dynamic instructions (one
DAI vs. three instructions: atomic, cache line flush, and fence),
and (2) the reliance on clean flushing (vs. CLFLUSH in ACF)
helps keeping data with high temporal locality resident in the
cache.

%
 a

to
m

ic
 u

pd
at

es

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Barn
es

Cho
les

ky FFT
FM

M

Oce
an
−C

Oce
an
−N

Rad
ix

Ray
tra

ce

W
ate

r−
SP

0.000
−40

−20

0

20

40

60

80

100

Barn
es

Cho
les

ky FFT
FM

M

Oce
an
−C

Oce
an
−N

Rad
ix

Ray
tra

ce

W
ate

r−
SP

%
 in

cr
ea

se
 in

 C
B

C
 f

or
 D

A
I

1,374%

−60

Fig. 6: Ratio of dynamic number of atomics over all writes
(left), and % increase in Cache Block Contention (CBC) for
DAI compared to ACF.

However, DAI locks a block in the cache for a longer time
than a regular atomic instruction, because it needs to flush
and wait for a MemAck before releasing the lock. Hence,
while a core is executing DAI, other cores wishing to access
the same block must wait longer. To asses this effect, we
measure the time a request (due to load/store/DAI/atomic)
must wait because the block in coherence controller is unable
to respond, e.g. due to a transient state or flushing a block.
We refer to this wait time (or delay) as cache block contention
(CBC), and measure how much CBC increases with DAIs
over ACF. Figure 6 (right) shows this percentage increase.
There are several interesting observations. First, the figure
explains why DAIs on Raytrace are slower than ACF: its
CBC increases substantially (more than 1000%). In some
benchmarks (Ocean-Cont and Ocean-Non), CBC decreases
with DAIs, contributing to DAIs outperforming ACF.

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 320
5

10
15
20
25
30

Sp
ee

du
p

Ocean-N FMM Raytrace

ACF
DAI

Fig. 7: Performance scalability of ACF and DAI with increas-
ing thread count.

Next, we evaluate the scalability of DAIs vs. ACF, as the
number of threads is varied from 1 to 32. The speedup over
the respective single-threaded case is plotted in Figure 7,
only for benchmarks for which DAIs and ACF performance
diverge. For all other benchmarks, the speedup graphs are
nearly identical. The figure shows that the scalability of

DAIs and ACF are comparable, with DAIs outscaling ACF
in Ocean-Non and vice versa for Raytrace.

Overall, the performance and scalability of our scheme
DAIs are comparable to regular atomic instructions with
cache line flush and fence (ACF), even though ACF does not
provide crash consistency. This striking result demonstrates
that DAIs provide crash consistent atomics without sacrificing
performance or scalability.

VI. CONCLUSION

In this paper, we argue the need of durable atomic in-
structions (DAIs) as low-level primitives that can be used
for persistent data synchronization as well as persistent lock-
free data structures. We show how DAIs can preserve the
semantics of traditional atomic instructions, with the addition
of durability. We also discuss approaches to hardware support
for DAIs, with our preferred approach requiring only low-
cost modifications to the cache coherence protocol. Finally,
we show that the performance and scalability of DAIs are
comparable to regular atomic instructions with cache line flush
and fence (ACF), across benchmarks from the Splash-4 suite.

REFERENCES

[1] Intel® Optane™ Persistent Memory 200 Series Brief. [Online].
Available:https://investors.micron.com/news-releases/news-release-
details/micron-and-intel-announce-update-3d-xpointtm-joint-
development [Accessed 08-Sep-2022].

[2] KIOXIA Introduces PCIe 4.0 Storage Class Memory SSDs. [On-
line]. Available: https://americas.kioxia.com/en-us/business/news/2021/
memory-20210913-1.html [Accessed 19-Oct-2022].

[3] T. L. Harris. A pragmatic implementation of non-blocking linked-lists.
In DISC, 2001.

[4] M. Friedman, M. Herlihy, V. Marathe, and E. Petrank. A persistent lock-
free queue for non-volatile memory. In ACM SIGPLAN Not., 2018.

[5] N. Nguyen and P. Tsigas. Lock-free cuckoo hashing. In IEEE ICDCS,
2014.

[6] W. Wang and S. Diestelhorst. Persistent atomics for implementing
durable lock-free data structures for non-volatile memory (brief an-
nouncement). In ACM SPAA, 2019.

[7] M. Liu, M. Zhang, et al. Dudetm: Building durable transactions with
decoupling for persistent memory. In ACM SIGPLAN Not., 2017.

[8] V. J. Marathe, M. Pavlovic, et al. Persistent multi-word compare-and-
swap, 2020. US Patent 10,678,587.

[9] T. Wang, J. Levandoski, and P. Larson. Easy lock-free indexing in non-
volatile memory. In IEEE ICDE, 2018.

[10] Intel® 64 and IA-32 Architectures Software Developer’s Manual. vol-
ume 2a: Instruction set reference. Order Number: 325383-077US.

[11] Arm® Architecture Reference Manual for A-profile architecture. [On-
line]. Available: https://developer.arm.com/documentation/ddi0487/ha/
[Accessed 19-Nov-2022].

[12] Persistent memory development kit (PMDK). [Online]. Available:
https://pmem.io/pmdk/ [Accessed 19-Nov-2022].

[13] A. Joshi, V. Nagarajan, et al. Efficient persist barriers for multicores. In
ACM MICRO, 2015.

[14] Yan Solihin. Fundamentals of Parallel Multicore Architecture. CRC
Press, 2015.

[15] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation.
In ACM SC, 2011.

[16] S. JE Wilton and N. P. Jouppi. CACTI: An enhanced cache access and
cycle time model. In IEEE JSSC, 1996.

[17] J. Izraelevitz, J. Yang, et al. Basic performance measurements of the
intel optane dc persistent memory module. arXiv:1903.05714 [cs.DC],
2019.

[18] E. J. Gómez-Hernández, R. Shao, et al. Splash-4: Improving scalability
with lock-free constructs. In IEEE ISPASS, 2021.

Authorized licensed use limited to: University of Central Florida. Downloaded on January 14,2024 at 17:04:31 UTC from IEEE Xplore. Restrictions apply.

