
Derrick Greenspan, Naveed Ul Mustafa,
Jongouk Choi, Mark Heinrich, Yan Solihin

CompArch & ARPERS research groups
Cyber Security and Privacy Research Cluster

Persistent Memory Objects on the
Cheap

International Conference on Supercomputing 2025.
Salt Lake City, Utah, United States. June 11.



Overview

1 Introduction and Background

2 Design
Light PMO (LPMO) Design

3 Evaluation
LPMO Performance
CXL Performance

4 Conclusion

ICS ’25 1 / 23



Persistent Memory (PM)

Example: Intel Optane, CXL Memory-Semantic SSDs

Characteristics

Slow write performance/Decent read performance

Poor multithreaded performance (more on this later)

Note: Devices with PM usually have DRAM as well

ICS ’25→Introduction and Background 2 / 23



Persistent Memory (PM)

Example: Intel Optane, CXL Memory-Semantic SSDs

Characteristics
Slow write performance/Decent read performance

Poor multithreaded performance (more on this later)

Note: Devices with PM usually have DRAM as well

ICS ’25→Introduction and Background 2 / 23



Persistent Memory (PM)

Example: Intel Optane, CXL Memory-Semantic SSDs

Characteristics
Slow write performance/Decent read performance

Poor multithreaded performance

(more on this later)

Note: Devices with PM usually have DRAM as well

ICS ’25→Introduction and Background 2 / 23



Persistent Memory (PM)

Example: Intel Optane, CXL Memory-Semantic SSDs

Characteristics
Slow write performance/Decent read performance

Poor multithreaded performance (more on this later)

Note: Devices with PM usually have DRAM as well

ICS ’25→Introduction and Background 2 / 23



Persistent Memory (PM)

Example: Intel Optane, CXL Memory-Semantic SSDs

Characteristics
Slow write performance/Decent read performance

Poor multithreaded performance (more on this later)

Note: Devices with PM usually have DRAM as well

ICS ’25→Introduction and Background 2 / 23



Persistent Memory Objects (PMOs)

Primitives: pcreate()

attach() detach() psync()

Properties
File-less

Potentially pointer-rich

Accessed via load-store instructions

Metadata managed by kernel

Features
Fast with minimal metadata

Crash-consistency

Security at rest

Integrity verification at rest

ICS ’25→Introduction and Background 3 / 23



Persistent Memory Objects (PMOs)

Primitives: pcreate() attach()

detach() psync()

Properties
File-less

Potentially pointer-rich

Accessed via load-store instructions

Metadata managed by kernel

Features
Fast with minimal metadata

Crash-consistency

Security at rest

Integrity verification at rest

ICS ’25→Introduction and Background 3 / 23



Persistent Memory Objects (PMOs)

Primitives: pcreate() attach() detach()

psync()

Properties
File-less

Potentially pointer-rich

Accessed via load-store instructions

Metadata managed by kernel

Features
Fast with minimal metadata

Crash-consistency

Security at rest

Integrity verification at rest

ICS ’25→Introduction and Background 3 / 23



Persistent Memory Objects (PMOs)

Primitives: pcreate() attach() detach() psync()

Properties
File-less

Potentially pointer-rich

Accessed via load-store instructions

Metadata managed by kernel

Features
Fast with minimal metadata

Crash-consistency

Security at rest

Integrity verification at rest

ICS ’25→Introduction and Background 3 / 23



Persistent Memory Objects (PMOs)

Primitives: pcreate() attach() detach() psync()

Properties
File-less

Potentially pointer-rich

Accessed via load-store instructions

Metadata managed by kernel

Features
Fast with minimal metadata

Crash-consistency

Security at rest

Integrity verification at rest

ICS ’25→Introduction and Background 3 / 23



Persistent Memory Objects (PMOs)

Primitives: pcreate() attach() detach() psync()

Properties
File-less

Potentially pointer-rich

Accessed via load-store instructions

Metadata managed by kernel

Features

Fast with minimal metadata

Crash-consistency

Security at rest

Integrity verification at rest

ICS ’25→Introduction and Background 3 / 23



Persistent Memory Objects (PMOs)

Primitives: pcreate() attach() detach() psync()

Properties
File-less

Potentially pointer-rich

Accessed via load-store instructions

Metadata managed by kernel

Features
Fast with minimal metadata

Crash-consistency

Security at rest

Integrity verification at rest

ICS ’25→Introduction and Background 3 / 23



Persistent Memory Objects (PMOs)

Primitives: pcreate() attach() detach() psync()

Properties
File-less

Potentially pointer-rich

Accessed via load-store instructions

Metadata managed by kernel

Features
Fast with minimal metadata

Crash-consistency

Security at rest

Integrity verification at rest

ICS ’25→Introduction and Background 3 / 23



Persistent Memory Objects (PMOs)

Primitives: pcreate() attach() detach() psync()

Properties
File-less

Potentially pointer-rich

Accessed via load-store instructions

Metadata managed by kernel

Features
Fast with minimal metadata

Crash-consistency

Security at rest

Integrity verification at rest

ICS ’25→Introduction and Background 3 / 23



Persistent Memory Objects (PMOs)

Primitives: pcreate() attach() detach() psync()

Properties
File-less

Potentially pointer-rich

Accessed via load-store instructions

Metadata managed by kernel

Features
Fast with minimal metadata

Crash-consistency

Security at rest

Integrity verification at rest

ICS ’25→Introduction and Background 3 / 23



Thread Scaling

Prior work exhibited poor thread scaling

△ 2dConv, ◦ Gauss, □ LU, × TMM, ▷ AVG

1 2 4 8 160
4
8

12
16
20

Sp
ee
du

p

Reasons
PMOs are hosted entirely in PM

Encryption and integrity verification on the critical path

ICS ’25→Introduction and Background 4 / 23



Thread Scaling

Prior work exhibited poor thread scaling

△ 2dConv, ◦ Gauss, □ LU, × TMM, ▷ AVG

1 2 4 8 160
4
8

12
16
20

Sp
ee
du

p

Reasons
PMOs are hosted entirely in PM

Encryption and integrity verification on the critical path

ICS ’25→Introduction and Background 4 / 23



Thread Scaling

Prior work exhibited poor thread scaling

△ 2dConv, ◦ Gauss, □ LU, × TMM, ▷ AVG

1 2 4 8 160
4
8

12
16
20

Sp
ee
du

p

Reasons
PMOs are hosted entirely in PM

Encryption and integrity verification on the critical path

ICS ’25→Introduction and Background 4 / 23



Thread Scaling

Prior work exhibited poor thread scaling

△ 2dConv, ◦ Gauss, □ LU, × TMM, ▷ AVG

1 2 4 8 160
4
8

12
16
20

Sp
ee
du

p

Reasons
PMOs are hosted entirely in PM

Encryption and integrity verification on the critical path

ICS ’25→Introduction and Background 4 / 23



CXL Devices

CXL: SOTA for PM

Compute Express Link
Utilizes PCIe interface

Direct access from CPU to memory

Heterogeneous memory pools

Can use PM or Volatile Memory

Additional latency
From controller

Comparable to NUMA

Goal: High-Performance PMOs

ICS ’25→Introduction and Background 5 / 23



CXL Devices

CXL: SOTA for PM

Compute Express Link
Utilizes PCIe interface

Direct access from CPU to memory

Heterogeneous memory pools

Can use PM or Volatile Memory

Additional latency
From controller

Comparable to NUMA

Goal: High-Performance PMOs

ICS ’25→Introduction and Background 5 / 23



CXL Devices

CXL: SOTA for PM

Compute Express Link
Utilizes PCIe interface

Direct access from CPU to memory

Heterogeneous memory pools

Can use PM or Volatile Memory

Additional latency
From controller

Comparable to NUMA

Goal: High-Performance PMOs

ICS ’25→Introduction and Background 5 / 23



CXL Devices

CXL: SOTA for PM

Compute Express Link
Utilizes PCIe interface

Direct access from CPU to memory

Heterogeneous memory pools

Can use PM or Volatile Memory

Additional latency
From controller

Comparable to NUMA

Goal: High-Performance PMOs

ICS ’25→Introduction and Background 5 / 23



CXL at-rest encryption

There is a way to do this...

CXL 3.1 Specification
Trusted Execution Environments (TEE) Security Protocol (TSP)

Range-based memory encryption

I.e., Transparent hardware encryption
...more on this later.

ICS ’25→Introduction and Background 6 / 23



CXL at-rest encryption

There is a way to do this...

CXL 3.1 Specification
Trusted Execution Environments (TEE) Security Protocol (TSP)

Range-based memory encryption

I.e., Transparent hardware encryption
...more on this later.

ICS ’25→Introduction and Background 6 / 23



CXL at-rest encryption

There is a way to do this...

CXL 3.1 Specification
Trusted Execution Environments (TEE) Security Protocol (TSP)

Range-based memory encryption

I.e., Transparent hardware encryption
...more on this later.

ICS ’25→Introduction and Background 6 / 23



CXL at-rest encryption

There is a way to do this...

CXL 3.1 Specification
Trusted Execution Environments (TEE) Security Protocol (TSP)

Range-based memory encryption

I.e., Transparent hardware encryption

...more on this later.

ICS ’25→Introduction and Background 6 / 23



CXL at-rest encryption

There is a way to do this...

CXL 3.1 Specification
Trusted Execution Environments (TEE) Security Protocol (TSP)

Range-based memory encryption

I.e., Transparent hardware encryption
...more on this later.

ICS ’25→Introduction and Background 6 / 23



Overview

1 Introduction and Background

2 Design
Light PMO (LPMO) Design

3 Evaluation
LPMO Performance
CXL Performance

4 Conclusion

ICS ’25→Design 7 / 23



Threat Model

Goal: Protect at-rest data from disclosure/corruption

Out of Scope
Side-channel attacks

Data-remanence attacks (DRAM)

ICS ’25→Design→ Light PMO (LPMO) Design 8 / 23



Threat Model

Goal: Protect at-rest data from disclosure/corruption

Out of Scope
Side-channel attacks

Data-remanence attacks (DRAM)

ICS ’25→Design→ Light PMO (LPMO) Design 8 / 23



Avoiding PM Pathologies

Prior work: PMO entirely in PM

Crash consistency simple

High latency, low write bandwidth

LPMO can exploit DRAM as cache without hardware support
DRAM as cache = Reconfigurable Memory

ICS ’25→Design→ Light PMO (LPMO) Design 9 / 23



Avoiding PM Pathologies

Prior work: PMO entirely in PM
Crash consistency simple

High latency, low write bandwidth

LPMO can exploit DRAM as cache without hardware support
DRAM as cache = Reconfigurable Memory

ICS ’25→Design→ Light PMO (LPMO) Design 9 / 23



Avoiding PM Pathologies

Prior work: PMO entirely in PM
Crash consistency simple

High latency, low write bandwidth

LPMO can exploit DRAM as cache without hardware support
DRAM as cache = Reconfigurable Memory

ICS ’25→Design→ Light PMO (LPMO) Design 9 / 23



Avoiding PM Pathologies

Prior work: PMO entirely in PM
Crash consistency simple

High latency, low write bandwidth

LPMO can exploit DRAM as cache without hardware support

DRAM as cache = Reconfigurable Memory

ICS ’25→Design→ Light PMO (LPMO) Design 9 / 23



Avoiding PM Pathologies

Prior work: PMO entirely in PM
Crash consistency simple

High latency, low write bandwidth

LPMO can exploit DRAM as cache without hardware support
DRAM as cache = Reconfigurable Memory

ICS ’25→Design→ Light PMO (LPMO) Design 9 / 23



Reconfigurable Memory Hierarchy

Challenges

Which data should be placed in DRAM?
All data in DRAM

Shadow in DRAM, primary in PM
Psync: Temporary Shadow Page (TSC) in PM, copy to Primary

What data should be encrypted?
Primary and shadow page encrypted

Primary and shadow in plaintext

Shadow in plaintext, primary in ciphertext

ICS ’25→Design→ Light PMO (LPMO) Design 10 / 23



Reconfigurable Memory Hierarchy

Challenges

Which data should be placed in DRAM?

All data in DRAM

Shadow in DRAM, primary in PM
Psync: Temporary Shadow Page (TSC) in PM, copy to Primary

What data should be encrypted?
Primary and shadow page encrypted

Primary and shadow in plaintext

Shadow in plaintext, primary in ciphertext

ICS ’25→Design→ Light PMO (LPMO) Design 10 / 23



Reconfigurable Memory Hierarchy

Challenges

Which data should be placed in DRAM?
All data in DRAM

Shadow in DRAM, primary in PM
Psync: Temporary Shadow Page (TSC) in PM, copy to Primary

What data should be encrypted?
Primary and shadow page encrypted

Primary and shadow in plaintext

Shadow in plaintext, primary in ciphertext

ICS ’25→Design→ Light PMO (LPMO) Design 10 / 23



Reconfigurable Memory Hierarchy

Challenges

Which data should be placed in DRAM?
All data in DRAM

Shadow in DRAM, primary in PM
Psync: Temporary Shadow Page (TSC) in PM, copy to Primary

What data should be encrypted?
Primary and shadow page encrypted

Primary and shadow in plaintext

Shadow in plaintext, primary in ciphertext

ICS ’25→Design→ Light PMO (LPMO) Design 10 / 23



Reconfigurable Memory Hierarchy

Challenges

Which data should be placed in DRAM?
All data in DRAM

Shadow in DRAM, primary in PM
Psync: Temporary Shadow Page (TSC) in PM, copy to Primary

What data should be encrypted?
Primary and shadow page encrypted

Primary and shadow in plaintext

Shadow in plaintext, primary in ciphertext

ICS ’25→Design→ Light PMO (LPMO) Design 10 / 23



Reconfigurable Memory Hierarchy

Challenges

Which data should be placed in DRAM?
All data in DRAM

Shadow in DRAM, primary in PM
Psync: Temporary Shadow Page (TSC) in PM, copy to Primary

What data should be encrypted?

Primary and shadow page encrypted

Primary and shadow in plaintext

Shadow in plaintext, primary in ciphertext

ICS ’25→Design→ Light PMO (LPMO) Design 10 / 23



Reconfigurable Memory Hierarchy

Challenges

Which data should be placed in DRAM?
All data in DRAM

Shadow in DRAM, primary in PM
Psync: Temporary Shadow Page (TSC) in PM, copy to Primary

What data should be encrypted?
Primary and shadow page encrypted

Primary and shadow in plaintext

Shadow in plaintext, primary in ciphertext

ICS ’25→Design→ Light PMO (LPMO) Design 10 / 23



Reconfigurable Memory Hierarchy

Challenges

Which data should be placed in DRAM?
All data in DRAM

Shadow in DRAM, primary in PM
Psync: Temporary Shadow Page (TSC) in PM, copy to Primary

What data should be encrypted?
Primary and shadow page encrypted

Primary and shadow in plaintext

Shadow in plaintext, primary in ciphertext

ICS ’25→Design→ Light PMO (LPMO) Design 10 / 23



Reconfigurable Memory Hierarchy

Challenges

Which data should be placed in DRAM?
All data in DRAM

Shadow in DRAM, primary in PM
Psync: Temporary Shadow Page (TSC) in PM, copy to Primary

What data should be encrypted?
Primary and shadow page encrypted

Primary and shadow in plaintext

Shadow in plaintext, primary in ciphertext

ICS ’25→Design→ Light PMO (LPMO) Design 10 / 23



Reconfigurable Memory Hierarchy
(Part 2)

Optane PM uses local DRAM

CPU

(a) CXL Attached PM,
No DRAM

(b) CXL Attached PM,
Local DRAM

PMPM

CPU

PM

CPU

Memory
Expander

DRAM

Memory
Expander

Memory
Expander

(c) CXL Attached PM,
CXL Attached DRAM

DRAM

CXL can place system on either side of memory expander

ICS ’25→Design→ Light PMO (LPMO) Design 11 / 23



Reconfigurable Memory Hierarchy
(Part 2)

Optane PM uses local DRAM

CPU

(a) CXL Attached PM,
No DRAM

(b) CXL Attached PM,
Local DRAM

PMPM

CPU

PM

CPU

Memory
Expander

DRAM

Memory
Expander

Memory
Expander

(c) CXL Attached PM,
CXL Attached DRAM

DRAM

CXL can place system on either side of memory expander

ICS ’25→Design→ Light PMO (LPMO) Design 11 / 23



Reduce page fault latency

Prior work: Demand Faulting
Why not predict when pages are needed?

Example Solution: Stream Buffer
On fault, predict next X sequential pages (depth)

Works well for access patterns amenable to prediction

ICS ’25→Design→ Light PMO (LPMO) Design 12 / 23



Reduce page fault latency

Prior work: Demand Faulting
Why not predict when pages are needed?

Example Solution: Stream Buffer
On fault, predict next X sequential pages (depth)

Works well for access patterns amenable to prediction

ICS ’25→Design→ Light PMO (LPMO) Design 12 / 23



Overview

1 Introduction and Background

2 Design
Light PMO (LPMO) Design

3 Evaluation
LPMO Performance
CXL Performance

4 Conclusion

ICS ’25→Evaluation 13 / 23



Evaluation

Evaluated Benchmarks
Microbenchmarks

2d Convolution (2dConv)
Gaussian Elimination (Gauss)
LU Decomposition (LU)
Tiled Matrix Matrix Multiplication (TMM)

Filebench (Fileserver, VarMail, WebProxy, WebServer)

LMDB

Component Specifications
MB Supermicro X11DPi-NT
CPU 2×Intel Xeon Gold 6230 (20 cores)

DRAM 4× 32GiB DDR4 @ 2666MHz
PM 4× 128GiB Intel Optane DIMM
OS AlmaLinux 9.0; Linux 5.15.157

ICS ’25→Evaluation 14 / 23



Evaluation

Evaluated Benchmarks
Microbenchmarks

2d Convolution (2dConv)
Gaussian Elimination (Gauss)
LU Decomposition (LU)
Tiled Matrix Matrix Multiplication (TMM)

Filebench (Fileserver, VarMail, WebProxy, WebServer)

LMDB

Component Specifications
MB Supermicro X11DPi-NT
CPU 2×Intel Xeon Gold 6230 (20 cores)

DRAM 4× 32GiB DDR4 @ 2666MHz
PM 4× 128GiB Intel Optane DIMM
OS AlmaLinux 9.0; Linux 5.15.157

ICS ’25→Evaluation 14 / 23



LPMO Performance

△ O, ◦ D, □ D2, × D4, ▷ D8

1 2 4 8 16
Number of Threads

0
2
4
6
8

Sp
ee

du
p

(a) Gauss

1 2 4 8 16
Number of Threads

0

2

4

6

Sp
ee

du
p

(b) LU

1 2 4 8 16
Number of Threads

0
2
4
6
8

Sp
ee

du
p

(c) TMM

All benchmarks have better thread scaling!

ICS ’25→Evaluation→ LPMO Performance 15 / 23



LPMO Performance

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

1.4x

O D

D
2

D
4

D
8

O
i

D
i

D
i2

D
i4

D
i8

E
x

ec
u

ti
o

n
 T

im
e

Average Microbenchmark Execution Time

DRAM reduces execution time by ≈ 21%

IV + Prediction faster than original GPMO design w/o IV

ICS ’25→Evaluation→ LPMO Performance 16 / 23



LPMO Performance

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

1.4x

O D

D
2

D
4

D
8

O
i

D
i

D
i2

D
i4

D
i8

E
x

ec
u

ti
o

n
 T

im
e

Average Microbenchmark Execution Time

DRAM reduces execution time by ≈ 21%

IV + Prediction faster than original GPMO design w/o IV

ICS ’25→Evaluation→ LPMO Performance 16 / 23



LPMO Performance - Filebench

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

1.4x

1.6x

1.8x

2x

O D

D
2

D
4

O
i

D
i

D
i2

D
i4

N
o

rm
al

iz
ed

 B
an

d
w

id
th

Average Filebench Bandwidth

Only 1.19× faster with DRAM

1.81× faster with page prediction

1.37× faster with page prediction & IV

ICS ’25→Evaluation→ LPMO Performance 17 / 23



LPMO Performance - Filebench

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

1.4x

1.6x

1.8x

2x

O D

D
2

D
4

O
i

D
i

D
i2

D
i4

N
o

rm
al

iz
ed

 B
an

d
w

id
th

Average Filebench Bandwidth

Only 1.19× faster with DRAM

1.81× faster with page prediction

1.37× faster with page prediction & IV

ICS ’25→Evaluation→ LPMO Performance 17 / 23



LPMO Performance - Filebench

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

1.4x

1.6x

1.8x

2x

O D

D
2

D
4

O
i

D
i

D
i2

D
i4

N
o

rm
al

iz
ed

 B
an

d
w

id
th

Average Filebench Bandwidth

Only 1.19× faster with DRAM

1.81× faster with page prediction

1.37× faster with page prediction & IV

ICS ’25→Evaluation→ LPMO Performance 17 / 23



CXL Performance

Perform same tests, but emulate CXL latency

CPU

(a) CXL Attached PM,
No DRAM

(b) CXL Attached PM,
Local DRAM

PMPM

CPU

PM

CPU

Memory
Expander

DRAM

Memory
Expander

Memory
Expander

(c) CXL Attached PM,
CXL Attached DRAM

DRAM

Use opposite-node Optane

Near configuration: cache allocated from local node

Far configuration: cache allocated from opposite node

ICS ’25→Evaluation→ CXL Performance 18 / 23



CXL Performance

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

1.4x

1.6x

1.8x

C O F

F
2 L

L
2 C
i

O
i

F
i

F
i2 L

i

L
i2

E
x

ec
u

ti
o

n
 T

im
e

Average Microbenchmark Execution Time

(Lower is better)

With CXL alone: 50% slower than original

With DRAM: 20% faster (despite CXL latency)

ICS ’25→Evaluation→ CXL Performance 19 / 23



CXL Performance - Filebench

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

1.4x

1.6x

1.8x

2x
C O F

F
2 L

L
2 C
i

O
i

F
i

F
i2 L

i

L
i2

N
o

rm
al

iz
ed

 B
an

d
w

id
th

Average Filebench Bandwidth

(Higher is better)

ICS ’25→Evaluation→ CXL Performance 20 / 23



Overview

1 Introduction and Background

2 Design
Light PMO (LPMO) Design

3 Evaluation
LPMO Performance
CXL Performance

4 Conclusion

ICS ’25→Conclusion 21 / 23



Conclusion

LPMO
Software-based DRAM caching

Up to 1.25× faster

Predictive Decryption
Up to 1.81× faster

CXL
Introduced Reconfigurable Memory Hierarchy

CXL latency can be masked by LPMO optimizations

ICS ’25→Conclusion 22 / 23



Conclusion

LPMO
Software-based DRAM caching

Up to 1.25× faster
Predictive Decryption

Up to 1.81× faster

CXL
Introduced Reconfigurable Memory Hierarchy

CXL latency can be masked by LPMO optimizations

ICS ’25→Conclusion 22 / 23



Conclusion

LPMO
Software-based DRAM caching

Up to 1.25× faster
Predictive Decryption

Up to 1.81× faster

CXL
Introduced Reconfigurable Memory Hierarchy

CXL latency can be masked by LPMO optimizations

ICS ’25→Conclusion 22 / 23



Q & A

Thank You!
Any questions?

ICS ’25→Conclusion 23 / 23


	Introduction and Background
	Design
	Light PMO (LPMO) Design

	Evaluation
	LPMO Performance
	CXL Performance

	Conclusion

