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Persistent Memory (PM)

Example: Intel Optane, CXL Memory-Semantic SSDs

Characteristics

Slow write performance/Decent read performance

Poor multithreaded performance (more on this later)

Note: Devices with PM usually have DRAM as well
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Persistent Memory Objects (PMOs)

Primitives: pcreate()

attach() detach() psync()

Properties
File-less

Potentially pointer-rich

Accessed via load-store instructions

Metadata managed by kernel

Features
Fast with minimal metadata

Crash-consistency

Security at rest

Integrity verification at rest
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Thread Scaling

Prior work exhibited poor thread scaling

△ 2dConv, ◦ Gauss, □ LU, × TMM, ▷ AVG
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Reasons
PMOs are hosted entirely in PM

Encryption and integrity verification on the critical path
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CXL Devices

CXL: SOTA for PM

Compute Express Link
Utilizes PCIe interface

Direct access from CPU to memory

Heterogeneous memory pools

Can use PM or Volatile Memory

Additional latency
From controller

Comparable to NUMA

Goal: High-Performance PMOs
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CXL at-rest encryption

There is a way to do this...

CXL 3.1 Specification
Trusted Execution Environments (TEE) Security Protocol (TSP)

Range-based memory encryption

I.e., Transparent hardware encryption
...more on this later.
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Threat Model

Goal: Protect at-rest data from disclosure/corruption

Out of Scope
Side-channel attacks

Data-remanence attacks (DRAM)
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Avoiding PM Pathologies

Prior work: PMO entirely in PM

Crash consistency simple

High latency, low write bandwidth

LPMO can exploit DRAM as cache without hardware support
DRAM as cache = Reconfigurable Memory
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Reconfigurable Memory Hierarchy

Challenges

Which data should be placed in DRAM?
All data in DRAM

Shadow in DRAM, primary in PM
Psync: Temporary Shadow Page (TSC) in PM, copy to Primary

What data should be encrypted?
Primary and shadow page encrypted

Primary and shadow in plaintext

Shadow in plaintext, primary in ciphertext
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Reconfigurable Memory Hierarchy
(Part 2)

Optane PM uses local DRAM

CPU

(a) CXL Attached PM,
No DRAM

(b) CXL Attached PM,
Local DRAM

PMPM

CPU

PM

CPU

Memory
Expander

DRAM

Memory
Expander

Memory
Expander

(c) CXL Attached PM,
CXL Attached DRAM

DRAM

CXL can place system on either side of memory expander
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Reduce page fault latency

Prior work: Demand Faulting
Why not predict when pages are needed?

Example Solution: Stream Buffer
On fault, predict next X sequential pages (depth)

Works well for access patterns amenable to prediction
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Evaluation

Evaluated Benchmarks
Microbenchmarks

2d Convolution (2dConv)
Gaussian Elimination (Gauss)
LU Decomposition (LU)
Tiled Matrix Matrix Multiplication (TMM)

Filebench (Fileserver, VarMail, WebProxy, WebServer)

LMDB

Component Specifications
MB Supermicro X11DPi-NT
CPU 2×Intel Xeon Gold 6230 (20 cores)

DRAM 4× 32GiB DDR4 @ 2666MHz
PM 4× 128GiB Intel Optane DIMM
OS AlmaLinux 9.0; Linux 5.15.157
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LPMO Performance

△ O, ◦ D, □ D2, × D4, ▷ D8
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(c) TMM

All benchmarks have better thread scaling!
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LPMO Performance
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DRAM reduces execution time by ≈ 21%

IV + Prediction faster than original GPMO design w/o IV
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LPMO Performance - Filebench
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Average Filebench Bandwidth

Only 1.19× faster with DRAM

1.81× faster with page prediction

1.37× faster with page prediction & IV
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CXL Performance

Perform same tests, but emulate CXL latency

CPU

(a) CXL Attached PM,
No DRAM

(b) CXL Attached PM,
Local DRAM

PMPM

CPU

PM

CPU

Memory
Expander

DRAM

Memory
Expander

Memory
Expander

(c) CXL Attached PM,
CXL Attached DRAM

DRAM

Use opposite-node Optane

Near configuration: cache allocated from local node

Far configuration: cache allocated from opposite node
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CXL Performance
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(Lower is better)

With CXL alone: 50% slower than original

With DRAM: 20% faster (despite CXL latency)
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CXL Performance - Filebench
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Conclusion

LPMO
Software-based DRAM caching

Up to 1.25× faster

Predictive Decryption
Up to 1.81× faster

CXL
Introduced Reconfigurable Memory Hierarchy

CXL latency can be masked by LPMO optimizations
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Q & A

Thank You!
Any questions?
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