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Abstract
Computer vision applications are becoming more and more popular in embedded systems such as drones, robots, tablets, 
and mobile devices. These applications are both compute and memory intensive, with memory bound stalls (MBS) making 
a significant part of their execution time. For maximum reduction in memory stalls, compilers need to consider architectural 
details of a platform and utilize its hardware components efficiently. In this paper, we propose a compiler optimization for a 
vision-processing system through classification of memory references to reduce MBS. As the proposed optimization is based 
on the architectural features of a specific platform, i.e., Myriad 2, it can only be applied to other platforms having similar 
architectural features. The optimization consists of two steps: affinity analysis and affinity-aware instruction scheduling. We 
suggest two different approaches for affinity analysis, i.e., source code annotation and automated analysis. We use LLVM 
compiler infrastructure for implementation of the proposed optimization. Application of annotation-based approach on a 
memory-intensive program shows a reduction in stall cycles by 67.44%, leading to 25.61% improvement in execution time. 
We use 11 different image-processing benchmarks for evaluation of automated analysis approach. Experimental results show 
that classification of memory references reduces stall cycles, on average, by 69.83%. As all benchmarks are both compute 
and memory intensive, we achieve improvement in execution time by up to 30%, with a modest average of 5.79%.

Keywords  Computer vision · Compiler optimization · Execution time · Memory bound stalls

1  Introduction

Computer vision (CV) is a rapidly growing field, mostly 
devoted to capturing, analysis, modification, and understand-
ing of images [1, 2]. With the arrival of high-resolution cam-
eras in mobile devices, CV applications are becoming more 
popular [1]. Embedded systems such as wearable devices, 
drones, robots, and tablets are supposed to support CV 

applications [3]. Domains that employ CV include surveil-
lance [4, 5], gesture recognition [6], face tracking [7, 8], 
medical imaging [9, 10], automotive safety [11, 12], and 
food industry [13–15], among others.

Computer vision applications are computationally expen-
sive and mostly required to execute in real time [1]. How-
ever, embedded platforms are limited on the power budget. 
There are two architectural solutions to reduce the power 
consumption and running the CV algorithms faster on 
embedded systems. One popular approach is to use a multi-
core platform. In general, two smaller cores collectively 
occupying the same area and consuming the same energy as 
compared to a single large core can provide 70–80% higher 
performance [16]. The other possible approach is using 
the dedicated optimized cores to implement the commonly 
used algorithms. This can be achieved using domain-specific 
hardware accelerators [1]. Besides employing architectural 
solutions, it is critical for a compiler to reduce the execution 
time of applications by taking into account the architectural 
features of the hardware platform [17].
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There have been various efforts to design vision-process-
ing systems targeting CV applications such as [2, 17–19], 
among others. One such effort is Myriad 2 platform from 
Movidius [20]. It is a low-power multi-processor system on 
chip (MPSoC) that uses an array of very long instruction 
word (VLIW) processors with vector and single instruction 
multiple data (SIMD) execution capabilities [21]. Each pro-
cessor supports two load and store units (LSUs) to overlap 
latency of memory operations. Since CV applications are 
heavy in both computation and memory requirements [22], 
the platform features a high bandwidth memory subsystem. 
However, being unaware of the memory organization, the 
compiler of Myriad 2 platform schedules memory accesses 
inefficiently. This results in unnecessary memory stalls and 
hence higher execution time for applications.

In this paper, we motivate the need to reduce memory 
bound stalls (MBS) in CV applications and identify the 
problem faced by the compiler of Myriad 2 platform in 
reducing such stalls. Our main contributions in this paper 
can be summarized as follows.

1.	 We propose an optimization through classification of 
memory references aiming to reduce MBS. The optimi-
zation consists of two steps: affinity analysis and affin-
ity-aware instruction scheduling (AAIS). While affinity 
analysis predicts the physical memory location for each 
memory object in the application’s source code, AAIS 
generates a stall-saving instruction schedule based on 
the results of affinity analysis step. A compiler equipped 
with the proposed optimization is named an affinity-
aware compiler (AAC).

2.	 We propose two different affinity analysis approaches 
along with their motivation, namely, source code annota-
tion and automated analysis.

The proposed optimization is based on efficiently utilizing 
the hardware components of Myriad 2 and, therefore, not 
applicable as it is to other platforms. However, it is expected 
to be relatively easy to adapt the optimization for other CV 
platforms with similar architectural features.

We implement the proposed optimization on LLVM com-
piler infrastructure [23] and evaluate it by running bench-
marks on the Myriad 2 board using the base compiler (BC) 
and the AAC. We apply annotation-based analysis approach 
only on a simple memory-intensive test program. It shows 
the reduction in stall cycles by 67.44% resulting in 25.61% 
improvement in the execution time. We evaluate the auto-
mated analysis approach by running 11 different compute 
and memory-intensive image-processing benchmarks on a 
Myriad 2 board using the AAC. Results show that AAC 
reduces stall cycles by 69.83% with a modest improvement 
in the execution time by 5.79%, on average, as compared to 
the BC.

The rest of this paper is organized as follows. Sec-
tion 2 describes the related work, while Sect. 3 motivates 
the reduction of MBS for CV applications. Section 4 pro-
vides the necessary details of a Myriad 2 platform needed 
to understand this work. Section 5 formulates the problem 
faced by the compiler in reducing MBS and proposes the 
solution. Section 6 provides the implementation details. 
Methodology for evaluation of proposed optimization is 
described in Sect. 7, while Sect. 8 shows evaluation results. 
Section 9 concludes this paper.

2 � Related work

Memory bound stalls cause underutilization of the compute 
logic due to memory latency and hence become a major hur-
dle in improving the execution time of an application [24]. 
Various approaches have been proposed to reduce memory 
stalls, such as data mapping in multi-bank environment, 
using non-uniform memory access (NUMA)-based design 
and architectural improvements in the memory and compute 
fabric.

Platforms with multi-bank memory system mitigate the 
problem by mapping simultaneously requested data on dif-
ferent memory banks. Researchers have presented proposals 
to implement data mapping as a back-end compiler optimi-
zation [25, 26] as well as by analyzing memory access pat-
tern at higher levels [27–29] for single-processor systems. 
Other works, such as [30, 31], propose approaches for map-
ping data of different applications to multiple memory banks 
in a multi-core environment.

NUMA is commonly used in modern multi-processor 
systems to avoid the bottleneck of shared memory accesses 
[32]. It provides asymmetric memory bandwidth and latency 
characteristics [33]. In other words, cost of accessing data 
located in remote memory modules is higher than access-
ing data blocks in local memory modules. Memory affinity 
is a way to reduce this cost by placing the data in memory 
modules closer to the processor executing the computation 
thread [34] and guarantees to improve memory bandwidth 
and latency [35].

Many researchers have contributed in the context of mem-
ory affinity to reduce memory access cost on NUMA plat-
forms. For example, an NUMA API for Linux was proposed 
in [36] which allows programmers to make memory alloca-
tions from a specific node or memory module, in addition to 
binding threads to specific CPUs. Different algorithms have 
been proposed to spread application data across different 
memories of an NUMA platform, such as round-robin, first 
touch affinity and next-touch affinity [32, 37]. An extension 
to Linux kernel to add support for the affinity-on-next-touch 
algorithm is reported in [38].
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In this work, we exploit the availability of dual load-store 
Units to processors of a vision-processing system and its 
NUMA architecture, where memory is divided into multiple 
slices, each one having an affinity to one of the processors. 
Unlike the traditional memory affinity approach focusing on 
the reduction of latency by placing data closer to the com-
puting processor [32, 33, 37, 39], the purpose of our affinity 
analysis is to reduce the memory bound stalls by taking into 
account memory organization and hence efficiently schedul-
ing memory accesses.

Another approach to reducing memory stalls, more 
related to our work, is optimization of the memory sub-
system of the execution platform and related architectural 
components of the compute fabric. Like Myriad 2 platform, 
Snapdragon 800 [40], MaPU [17], and TI AcceleratorPac 
[18] use VLIW processors as main execution units [19] 
combined with RISC cores and other dedicated components. 
Unlike these systems using unified memory, Myriad 2 uses 
NUMA architecture enabling multiple cores to access their 
local memory slices simultaneously and hence make a con-
tribution in reducing memory stalls.

Hexagon DSP on Snapdragon 800 is a VLIW featuring 
two data units. Each data unit is capable of executing a load, 
a store or an ALU instruction but unable to pack two mem-
ory accesses with one or more ALU instructions in a single 
cycle. On the other hand, VLIW processors of Myriad 2 are 
capable of packing two memory accesses with up to two 
ALU instructions in a single cycle.

MaPU platform contains ten processing cores with uni-
fied memory scheme. A core can make up to three memory 
accesses simultaneously but into different physical memo-
ries. Furthermore, a physical memory cannot be accessed 
by different cores simultaneously. As compared to MaPU, 
Myriad 2 supports simultaneous accesses to memory at two 
levels. First, multiple cores can access their local memory 
slices simultaneously due to NUMA architecture. Second, 
each core can make up to two simultaneous accesses into 
its local slice.

As noted by designers of MapU [17], compilers are a 
major source of the lower performance of execution plat-
forms as they use a simplified model of processor architec-
ture and do not consider detailed architectural features of the 

platform. Since our proposed compiler optimization is based 
on comparatively better architectural features of Myriad 2 
platform (such as dual load-store units per processor and a 
high bandwidth memory subsystem), as shown in Table 1, it 
is not only different than Hexagon DSP and MaPU, but has 
a potential of achieving higher performance.

  

3 � Motivation

The execution time of an application can be divided into two 
broad categories: commit cycles and stall cycles. A clock 
cycle is categorized as a commit cycle if at least one instruc-
tion is retired during the cycle; otherwise, it is categorized 
as a stall cycle. Various reasons such as unavailability of 
functional units, bad branch prediction, or data dependencies 
result in stall cycles. The unavailability of data required for 
instruction execution incurs extra clock cycles in the form 
of a cache miss penalty. Such cycles are termed memory 
bound stalls (MBS).

We characterize a set of CV benchmarks to understand 
the distribution of execution time across different categories. 
The set consists of benchmarks performing basic image-pro-
cessing operations such as image addition and subtraction 
[41], box filtering [42], convolution [43], sum of absolute 
difference [44], white balancing operation [45], histogram 
generation, and similarity measurement between pixels of 
two input images [46]. “Appendix” provides the critical part 
of the source code for benchmarks. We use Intel’s VTune 
performance analyzer [47] to breakdown the execution time 
of benchmarks into commit cycles (CC), bad speculation 
stalls (BSS), MBS, core bound stalls (CBS), and front-end 
bound stalls (FEBS).

As shown in Fig. 1, on average, MBS make almost 33% 
of the total execution time. It suggests the criticality of MBS 
in reducing the execution time of an application. Therefore, 
a platform running CV applications should have an efficient 
memory architecture supporting the data transactions with 
high bandwidth and low latency. In addition to that the soft-
ware infrastructure, such as compiler and assembler, should 

Table 1   Comparison of architectural features of different CV platforms

Platform Uses NUMA 
architecture

Support for packing more than two memory 
instructions with an ALU instruction

Support for multiple simultaneous accesses 
by a single processor to the same physical 
memory.

Snapdragon 800 (with 
Hexagon DSP)

× × ✓

MaPU × ✓ ×

TI AcceleratorPAC × Details not available Details not available
Myriad 2 ✓ ✓ ✓
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take advantage of architectural features offered by the plat-
form to reduce MBS.

 

4 � Myriad 2 architecture

Figure 2, based on [48, 49], shows the architectural layout 
of a Myriad 2 Platform developed by Movidius Ltd [20]. It 
is an MPSoC containing multiple heterogeneous processors, 
hardware accelerators, memories, and external interfaces. 
Target application domain for the Myriad 2 platform is video 
filtering and image recognition in embedded systems [49].

Myriad 2 contains 12 streaming hybrid architecture vec-
tor engine (SHAVE) and two reduced instruction set com-
puting (RISC) processors. SHAVE processors are the real 
workhorse of Myriad 2 and are designed to crunch the com-
plex imaging and vision algorithms [48]. The platform offers 
a 2 MB connection matrix (CMX) memory along with a 
number of programmable hardware accelerators for vision 
processing. Accelerators are connected to the CMX memory 
via a crossbar [3].

SHAVE is a VLIW processor containing a set of func-
tional units which are fed with operands from three differ-
ent register files [21]. The processor contains optimized 
functional units such as a branch and repeat unit (BRU), 
a compare and move unit (CMU), arithmetic units, and 

Fig. 1   Benchmarks: P1 = subtraction of two images, P2 = addition 
of four images, P3 = addition of two images, P4 = addition of two 
images based on a mask input, P5 = box filtering using 5 × 5 mask, 
P6 = addition of two scaled images, P7 = convolution using 3 × 3 

mask, P8 = sum of absolute difference using a 5 × 5 window, P9 = 
white balancing operation, P10 = histogram generation, and P11 = 
similarity measurement between pixels of two images

Fig. 2   Architectural layout of a Myriad 2 platform
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two load-store units (LSUs). Each SHAVE processor can 
execute two load-store instructions simultaneously.

4.1 � CMX memory

As shown in Fig. 3a, the 2 MB CMX memory is divided 
into 16 different slices, each with a size of 128 KB. A 
slice can hold both instructions and the data for a program 
running on a processor. Each of the first twelve slices 
(i.e., slice 0–slice 11) has an affinity to 1 of 12 SHAVE 
processors. Since Myriad 2 is a non-uniform memory 
access (NUMA) platform, it is more efficient in terms 
of latency and energy consumption for a processor to 
access its local slice (i.e., slice 0 for SHAVE 0). However, 
processors can also access any other slice in the CMX 
memory but with a higher latency. Therefore, placement 
of data in the local slice of a processor is recommended.

 
A slice is further divided into four regions, named 

R0, R1, R2, and R3 in Fig. 3b, each with a size of 32 
KB. In principle, the architectural design of the CMX 
memory allows four simultaneous memory accesses in 
four different regions of a given slice. Each region is a 
single physical block of random access memory (RAM) 
with a single chip select and a single set of address and 
data paths. Therefore, simultaneous memory accesses in 
the same region are not recommended as they result in 
stall cycles due to clash among memory ports. Since a 
SHAVE processor has only two LSUs, only two simul-
taneous memory accesses are practically possible into a 
single CMX slice. Simultaneous memory accesses can 
be performed in any of the two different regions, e.g., R0 
and R1 or R0 and R2.

5 � Problem and proposed solution

In this section, we describe the limitations of a generic com-
piler in efficiently accessing the CMX memory to reduce 
the MBS. We also propose a solution to overcome these 
limitations to generate a stall-saving instruction schedule 
and hence achieve the faster execution of an application.

5.1 � Problem formulation

In CV applications, generally, a data frame is processed by 
applying a filter across all of its pixels. A data frame can 
occupy a single region of a given slice, multiple regions, or 
even multiple slices. Since Myriad 2 is an NUMA platform, 
it is important to place a data frame in a slice local to the 
computing processor to reduce memory latency.

Another way to reduce memory stalls is to issue mul-
tiple simultaneous memory accesses. Since SHAVE is a 
VLIW processor with two LSUs (0 and 1), it is a wastage of 
resources to perform all memory accesses in a serial fashion. 
Therefore, the compiler supports scheduling of up to two 
accesses to a given CMX slice in a single cycle provided 
that both LSUs are available. However, a check is required 
to avoid simultaneous accesses in the same region of a given 
slice due to the clash between memory ports, as described in 
Sect. 4.1. Since BC does not perform this check and always 
schedules simultaneously requested memory accesses in the 
same cycle, it may result in blocking of one memory instruc-
tion by another leading to memory stalls.

Such stall cycles can be avoided by making the compiler 
aware of the architectural limitations of the CMX memory. 
If provided with the information about the physical loca-
tion of each memory object in a CMX slice, the compiler 
can generate optimized instruction schedule leading to the 
reduction of MBS.

Fig. 3   Organization of the CMX 
memory and its interface with 
SHAVE processors in Myriad 2

(a) (b)
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It is important to clarify that BC is already equipped 
with necessary support needed to resolve conflicts among 
multiple SHAVE processors and/or accelerators requesting 
simultaneous accesses to the same memory slice. Therefore, 
the focus of this work is not the conflict resolution among 
multiple processors but handling simultaneous accesses by 
a single processor to the same slice.

5.2 � Proposed solution

Our proposed solution consists of two steps. In the first step, 
named affinity analysis, each memory object is appended 
with an affinity number at compile time to predict its physi-
cal location in the CMX slice.

In the second step, i.e., AAIS, the scheduler uses the 
appended affinity numbers for efficient scheduling of mem-
ory instructions. In the AAIS, two instructions requesting 
simultaneous access in the same CMX slice are scheduled 
in the same cycle only if two conditions are satisfied:

–	 Condition 1: Both LSUs are available.
–	 Condition 2: Memory objects to be accessed by instruc-

tions have different affinity numbers.

If any one of these two conditions is not satisfied, instruc-
tions are not scheduled in the same cycle. In the rest of this 
paper, we assume that the first condition is always true.

AAIS reduces stall cycles by avoiding blocking of one 
memory instruction by another. A compiler using AAIS 
is named AAC. Otherwise, the scheduling is named basic 
instruction scheduling (BIS) and the compiler as BC. Note 
that BC tests only the first condition for simultaneous sched-
uling of memory instructions, while AAC tests both of them.

To understand the calculation of affinity numbers, let us 
divide CMX slice into two logical vertical sections named 
Tile0 and Tile1. This logical division is shown in Fig. 3b, 
where each tile has two physical regions. Let us consider two 
instruction, Inst1 and Inst2, requesting access in the same 

CMX slice simultaneously with addresses for their respec-
tive memory objects as BP + �1 and BP + �2 , where BP is 
a base address and � is the offset from BP. Since the base 
address is not known at compile time, only offset value is to 
be used to infer the physical location of a memory object.

Assuming that base address is 16-byte aligned (i.e., a 
multiple of 16), offset can be used to find the ID of the tile a 
memory object belongs to. Since each tile is 8-byte wide, if 
the offset address is in the range of [8 × n, (8 × (n + 1)) − 1] , 
then the memory belongs to Tile 1. Otherwise, the memory 
object belongs to Tile 0. With n defined as an odd number, 
the expression [8 × n, (8 × (n + 1)) − 1] represents ranges 
such as [8, ...., 15], [24, ...., 31] and so on. Note that an 
offset address within these ranges will always have its third 
bit set to 1. In other words, using a mask = 0 × 008 , a mem-
ory object with address BP + � belongs to Tile 0 if bitwise 
and operation between � and mask equals zero and to Tile 
1 otherwise.

Depending on the results of masking operations, there 
are two cases for the calculation of affinity numbers in the 
affinity analysis step.

–	 Case A: (�1&mask)! = (�2&mask) . In this case, memory 
objects of Inst1 and Inst2 belong to different tiles, guar-
anteeing that they also belong to different regions, as 
shown in Fig. 4. Since the AAIS performs a non-equal-
ity test on affinity numbers, tile IDs can be appended 
to memory objects in place of region IDs in the affinity 
analysis step without the loss of correctness.

	   As the two memory objects belong to different regions 
and each region has its own set of memory ports, there is 
no architectural restriction on simultaneous execution of 
Inst1 and Inst2. In this case, both BIS and AAIS gener-
ate the same instruction schedule. BIS schedules Instr1 
and Instr2 in the same cycle without testing the second 
condition. On the other hand, AAIS detects that second 
condition is true and hence schedules the instructions in 
the same cycle.

Fig. 4   Different scenarios where two memory objects belong to different tiles. BP + � is the address of a memory object, where BP is the base 
address and � is the offset from BP
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–	 Case B: (�1&mask) = (�2&mask) . In this case, memory 
objects of Inst1 and Inst2 belong to the same tile, but 
they may or may not belong to the same region. This 
can be established by calculating the absolute difference 
between two offsets, i.e., Diff = abs(�1 − �2) . An abso-
lute difference of greater than or equal to the size of two 
regions (i.e., 64 K bytes) guarantees that the two memory 
objects belong to different regions in the same tile, as 
shown in Fig. 5a. However, there is no such guarantee 
when Diff is less than 64K bytes. Memory objects may 
(e.g., Fig. 5b) or may not (e.g., Fig. 5c, d) belong to dif-
ferent regions in the same tile.

	   Since BP is not known at compile time, it is not pos-
sible to calculate region numbers for the situations, as 
shown in Fig. 5b–d. Therefore, we pessimistically assume 
that the two memory objects belonging to the same tile 
always belong to the same region. In other words, like 
Case A, we suggest appending the tile ID of a memory 
object as its affinity number in the affinity analysis step. 
In the following discussion, we break Case B into two 
sub-cases and compare the AAIS with the BIS in each 
sub-case.

–	 Case B1: Memory objects belong to the same tile but 
different regions. Table 2 compares three different BIS 
and AAIS-generated schedules for Case B. Let us assume 
that all three schedules are generated by BIS for the sce-
nario, as depicted in Fig. 5a, b. BIS-generated instruction 
schedule 1 consists of one ADD instruction, two mem-
ory instructions, and an SUB instruction. With memory 
objects located in different regions (of the same tile), 
scheduling of memory instructions by BIS in the same 
cycle (indicated by placing ∥ symbol between them in 
cycle 2) does not incur a stall. The BIS-generated sched-
ule has an execution time of three cycles.

	   The corresponding AAIS-generated schedule is shown 
in the third column. Since memory objects belong to 
the same tile, the affinity analysis step pessimistically 
assumes that they also belong to the same region (which 
is not true) and appends their tile IDs as their affinity 
numbers. This makes the second condition to be false. 
As a result, AAIS serializes memory instructions by 
scheduling one of them in the same cycle with the ADD 
instruction and the other one with the SUB instruction. 
This reduces the execution time from 3 to 2 cycles as 
compared to BIS. Note that, SHAVE is a VLIW pro-
cessor, capable of executing multiple instructions in the 
same cycle depending on the availability of functional 
units.

	   The BIS-generated instruction schedule two consists of 
one ADD instruction and two memory instructions. The 
schedule incurs no stall cycle and has an execution time 
of 2 cycles. As shown in the third column, AAIS serial-
izes the two memory instructions by scheduling one of 
them with the ADD instruction. Although it changes the 
schedule as compared to BIS, the execution time remains 
the same as there is no change in the number of instruc-
tion cycles and stalls.

	   The BIS-generated instruction schedule three consists 
of only two memory instructions. The schedule incurs no 
stall cycle and has an execution time of 1 cycle. On the 
other hand, AAIS serializes the two memory instructions 
by scheduling them in different cycles. This increases the 
execution time from 1 to 2 cycles as compared to BIS.

	   In summary, AAIS in Case B1 does not change 
the stall cycles as compared to BIS. However, it may 
increase, decrease, or not affect the number of instruc-
tion cycles depending on the BIS-generated instruction 
schedule.

(a) (b) (c) (d)

Fig. 5   Different scenarios where two memory objects belong to the 
same tile. Figure 5a shows that absolute difference Diff between off-
sets of two memory objects is greater than or equal to 64 K bytes, 
indicating that two memory objects belong to different regions. Fig-

ure 5b shows Diff less than 64 K bytes and memory objects belong 
to different regions. Figure 5c, d shows Diff less than 64 K bytes, but 
memory objects belong to the same region
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–	 Case B2: Memory objects belong to the same tile and 
the same region. Let us assume that all BIS schedules 
shown in Table 2 are generated for the case, as depicted 
in Fig. 5c, d. With memory objects located in the same 
region (of the same tile), the two memory instructions 
scheduled in the same cycle by BIS in schedule 1 incur 
a stall. This results in total execution time of 4 cycles 
(i.e., three instruction cycles and one stall). In the cor-
responding AAIS-generated schedule, affinity analysis 
step assumes that memory objects belonging to the same 
tile also belong to the same region (which is true in this 
case). As a result, AAIS serializes memory instructions 
by scheduling them in different cycles (with ADD and 
SUB instructions). This not only avoids the stall cycle, 
but also reduces the instruction cycles. Hence, the execu-
tion time reduces from four to two cycles as compared to 
BIS.

	   The BIS-generated instruction schedule 2 incurs one 
stall cycle for two memory instructions scheduled in the 
same cycle. This results in an execution time of three 
cycles, i.e., two instruction cycles and one stall. However, 
AAIS serializes the two memory instructions by schedul-
ing one of them with the ADD instruction. This saves the 
stall cycle and hence reduces the execution time from 3 
to 2 cycles.

	   The BIS-generated instruction schedule 3 consists of 
only two memory instructions and incurs a single stall 
cycle, resulting in an execution time of two cycles. On 
the other hand, AAIS serializes the two memory instruc-
tions by scheduling them in different cycles. This avoids 
the stall cycle but also increase the number of instruction 
cycles resulting in no effect on the execution time.

	   In summary, AAIS in Case B2 reduces the stall cycles 
as compared to BIS. However, it may increase, decrease, 
or not affect the number of instruction cycles depending 
on the BIS-generated instruction schedule.

It is clear from the above discussion that AAIS can 
reduce stall cycles when simultaneous accesses are 
requested into the same region of a tile. Furthermore, 
above discussion shows that tile IDs can be used as affin-
ity numbers without the loss of correctness. It is impor-
tant to mention that affinity numbers are merely used as a 

compile time prediction for the physical location of mem-
ory objects and do not provide any means of controlling 
data placement.

We propose two different approaches for the first step 
of our solution, i.e., affinity analysis. In the source code 
annotation approach, tile IDs are appended to memory 
objects by a programmer using custom attributes. In the 
automated analysis approach, tile IDs are inferred from the 
source code by analyzing the relative addresses of memory 
objects. Note that any one of these two approaches can be 
combined with the second step (i.e., AAIS) to construct 
the complete solution. Both approaches are discussed in 
the following subsections.

5.2.1 � Source code annotation

It is a compile time approach that involves appending the 
tile ID to each memory object in the application source 
code. This is achieved by defining a custom attribute and 
making the compiler aware of its syntax and semantics.

In annotation-based approach, the difference between 
predicted and actual physical locations of memory objects 
depends upon the knowledge a programmer has about the 
layout of application data. Tile IDs can be appended more 
accurately by having a good understanding of data struc-
tures used in the application and their access patterns. 
For example, tile IDs to be appended to array elements 
depend upon the location of the first element in a CMX 
slice (i.e., Tile 0/1), offset from the base address, and the 
byte alignment.

Figure 6 shows different predictions for physical loca-
tions of array elements by appending tile IDs through 
source code annotation. The actual placement of array ele-
ments in the CMX slice is shown in Fig. 6e. Let us assume 
that the BC simultaneously schedules the access to A[0] in 
the same cycle with A[3] and access to A[1] in the same 
cycle with A[2]. This will result in two stall cycles as two 
memory accesses will be blocked due to a clash between 
memory ports. In other words, this particular example has 
optimization potential of 2. Figure 6b shows the best pre-
diction of physical locations as it reflects the real mapping 
of array elements in the CMX slice.

(a) (b) (c) (d) (e)

Fig. 6   Predictions of physical locations through source code annotation
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5.2.2 � Automated analysis

To avoid the modification of application source code and 
to automate the process of appending tile IDs to memory 
objects, we also propose the automated analysis. It is also a 
compile time approach like source code annotation.

Since the base address of a memory object is not known 
at compile time, the automated approach uses relative 
addresses for calculating tile IDs with the following assump-
tions about data storage.

1.	 Data structures are stored in memory in a sequential 
manner.

2.	 The first element of a data structure is always located at 
the 16-byte boundary.

We propose an algorithm, shown in Algorithm 1, for auto-
mated analysis of addresses and appending tile IDs to mem-
ory objects. It is applicable only to data elements belonging 
to the same data structure and it operates on the level of each 
function independently.

Algorithm 1 operates as follows. For each memory 
instruction i in the function Func, the address of its mem-
ory object is retrieved into memObject_i (lines 1–3) and 
then broken into the base address and the offset (line 4). Ta

bl
e 

2  
C

om
pa

ris
on

 o
f A

A
IS

 w
ith

 B
IS

 in
 C

as
e 

B 

Sc
h 

#
B

IS
A

A
IS

C
as

e 
B1

: M
em

or
y 

ob
je

ct
s o

f I
ns

t1
 a

nd
 In

st
2 

be
lo

ng
 to

 th
e 

sa
m

e 
til

e 
bu

t d
iff

er
en

t r
eg

io
ns

.
C

as
e 

B2
: M

em
or

y 
ob

je
ct

s o
f I

ns
t1

 a
nd

 In
st

2 
be

lo
ng

 to
 th

e 
sa

m
e 

til
e 

an
d 

th
e 

sa
m

e 
re

gi
on

.

1
1)

 IA
U

.A
D

D
 I1

0,
 I1

1,
 I1

2
1)

 IA
U

.A
D

D
 I1

0,
 I1

1,
 I1

2 
∥
 L

SU
1.

LD
.3

2 
I1

, I
8

N
um

be
r o

f s
ta

lls
 d

oe
s n

ot
 c

ha
ng

e,
 w

hi
le

 
nu

m
be

r o
f i

ns
tru

ct
io

n 
cy

cl
es

 re
du

ce
s (

fro
m

 
3 

to
 2

) i
n 

ca
se

 o
f A

A
IS

N
um

be
r o

f s
ta

lls
 a

nd
 in

str
uc

tio
n 

cy
cl

es
 re

du
ce

 
(f

ro
m

 1
 to

 0
 a

nd
 fr

om
 3

 to
 2

, r
es

pe
ct

iv
el

y)
 in

 
ca

se
 o

f A
A

IS
2)

 L
SU

0.
LD

.3
2 

I0
, I

7 
∥
 L

SU
1.

LD
.3

2 
I1

, I
8

2)
 L

SU
0.

LD
.3

2 
I0

, I
7 
∥
 IA

U
.S

U
B

 I2
, I

3,
 I4

Ex
ec

ut
io

n 
tim

e 
re

du
ce

s (
fro

m
 3

 to
 2

 c
yc

le
s)

 
as

 c
om

pa
re

d 
to

 B
IS

Ex
ec

ut
io

n 
tim

e 
re

du
ce

s (
fro

m
 4

 to
 2

 c
yc

le
s)

 a
s 

co
m

pa
re

d 
to

 B
IS

3)
 IA

U
.S

U
B

 I2
, I

3,
 I4

2
1)

 IA
U

.A
D

D
 I1

0,
 I1

1,
 I1

2
1)

 IA
U

.A
D

D
 I1

0,
 I1

1,
 I1

2 
∥
 L

SU
1.

LD
.3

2 
I1

, I
8

N
um

be
r o

f s
ta

lls
 a

nd
 in

str
uc

tio
n 

cy
cl

es
 d

oe
s 

no
t c

ha
ng

e
N

um
be

r o
f s

ta
lls

 re
du

ce
s (

fro
m

 1
 to

 0
) b

ut
 

nu
m

be
r o

f i
ns

tru
ct

io
n 

cy
cl

es
 d

oe
s n

ot
 

ch
an

ge
2)

 L
SU

0.
LD

.3
2 

I0
, I

7 
∥
 L

SU
1.

LD
.3

2 
I1

, I
8

2)
 L

SU
0.

LD
.3

2 
I0

, I
7

Ex
ec

ut
io

n 
tim

e 
re

m
ai

ns
 sa

m
e 

as
 in

 B
IS

 (i
.e

., 
2 

cy
cl

es
)

Ex
ec

ut
io

n 
tim

e 
re

du
ce

s (
fro

m
 3

 to
 2

 c
yc

le
s)

 a
s 

co
m

pa
re

d 
to

 B
IS

3
1)

 L
SU

0.
LD

.3
2 

I0
, I

7 
∥
 L

SU
1.

LD
.3

2 
I1

, I
8

1)
 L

SU
1.

LD
.3

2 
I1

, I
8

N
um

be
r o

f s
ta

lls
 d

oe
s n

ot
 c

ha
ng

e 
bu

t n
um

-
be

r o
f i

ns
tru

ct
io

n 
cy

cl
es

 in
cr

ea
se

s (
fro

m
 1

 
to

 2
) i

n 
ca

se
 o

f A
A

IS

N
um

be
r o

f s
ta

lls
 re

du
ce

s (
fro

m
 1

 to
 0

) a
nd

 
nu

m
be

r o
f i

ns
tru

ct
io

n 
cy

cl
es

 in
cr

ea
se

s (
fro

m
 

1 
to

 2
) i

n 
ca

se
 o

f A
A

IS
2)

 L
SU

0.
LD

.3
2 

I0
, I

7
Ex

ec
ut

io
n 

tim
e 

in
cr

ea
se

s (
fro

m
 1

 to
 2

 c
yc

le
s)

 
as

 c
om

pa
re

d 
to

 B
IS

Ex
ec

ut
io

n 
tim

e 
re

m
ai

ns
 sa

m
e 

as
 in

 B
IS

 (i
.e

., 
2 

cy
cl

es
)



862	 Journal of Real-Time Image Processing (2020) 17:853–870

1 3

If not already appended with a tile ID, one is calculated 
for memObject_i (lines 5–7). Note that the width of each 
tile of a CMX slice is 8 bytes, as shown in Fig. 3b. Tile 
ID is decided based on the masking of offset value (i.e., 
Offset_memObject_i ) with 0 × 008. The inner for loop 
(line 9–17) scans all other memory instructions in Func 
to find if they access a memory object with the same base 
address as memObject_i but with a different offset value. 
The condition of same base address ensures that memory 
objects belong to the same data structure. If the condi-
tion is true and new memory object (i.e., memObject_j ) 
is not already appended with a tile ID, it is appended 
with a one based on masking of its offset value (i.e., 
Offset_memObject_j ) with 0 × 008.

5.2.3 � Discussion

AAIS leads to the reduction of memory stalls only if an 
application has an inherent potential for optimization. If 
there are no simultaneous requests for accessing the same 
region of a CMX slice, there will be no stall cycles in the 
BIS-generated schedule and hence no space for AAIS to 
optimize the schedule. The optimization potential of an 
application can be defined as the number of simultaneous 
memory accesses to the same region scheduled in a single 
cycle by BIS. Optimization potential can easily be calcu-
lated by inspecting the assembly code of an application 
generated by the BC.

To harness the optimization potential of an application, 
physical locations of memory objects predicted by affin-
ity numbers and their actual physical locations should be 
same. Otherwise, appended tile IDs will provide wrong 
information to the scheduler for AAIS leading to the 
generation of an unoptimized or unwanted instruction 
schedule.

The source code annotation places a burden on the pro-
grammer to attach custom attributes to memory objects. 
For large applications, it can be time-consuming and 
may also require modifications other than simply attach-
ing custom attributes. However, if data placement can be 
enforced on the application data and it is a known priori, 
this approach could be more accurate and beneficial in 
reducing stall cycles than the automated one.

On the other hand, automated analysis relieves the pro-
grammer from the manual modifications in the applica-
tion source code. However, it appends tile IDs to memory 
objects based on their offset from the base address of data 
structure they belong to. It also assumes that the first ele-
ment of a data structure is always aligned at the 16-byte 
boundary. This may result in appended tile IDs (i.e., pre-
dicted physical locations) not reflecting the actual loca-
tions of memory objects.

6 � Implementation

In this section, we provide the details of modifications 
applied on Myriad 2 compiler to implement the proposed 
solution. We first explain the implementation of affin-
ity analysis step using both approaches, followed by the 
implementation details of AAIS.

6.1 � Source code annotation

Myriad 2 compiler is an extended version of LLVM com-
piler framework that is tailored to generate code for a 
SHAVE processor. Like LLVM, Myriad 2 compiler also 
uses Clang as a compiler front-end for C/C++ languages. 
To implement the annotation-based approach, we modify 
the LLVM framework at two levels.

6.1.1 � Adapting the front‑end

The idea of source code annotation is to allow the pro-
grammer appending tile IDs to all memory objects in the 
application source code. We enable this by defining a cus-
tom attribute for any type and making Clang aware of its 
syntax and semantics. We modify the Clang source code 
as described below.

1.	 Add the definition of the custom attribute to Clang.
2.	 Modify the relevant functions in Clang to detect if a 

given variable declaration or initialization in the source 
code has the custom attribute defined in step 1. The vari-
able can be of any type including the pointer variable.

3.	 If a variable has the custom attribute, then attach the 
metadata to the corresponding alloc, load, or store 
instructions generated for allocation or initialization of 
the variable.

6.1.2 � Adapting the backend

The above-mentioned modifications enable the Clang to 
recognize custom attribute and take the appropriate actions 
to process it. However, the information needs to be propa-
gated from the front-end to the backend.

In LLVM, selection DAG builder class builds an initial 
directed acyclic graph providing an abstraction for code 
representation [50]. We modify the relevant functions in 
the class to propagate the predicted physical locations 
of memory objects down to the post-register allocation 
scheduling (PostRAS) pass. This is achieved by detecting 
the existence of metadata of the desired kind while visiting 
alloc, store, and load instructions. Upon finding metadata, 
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tile IDs are appended to memory objects of these instruc-
tions based on the value of their metadata.

6.2 � Automated analysis

Unlike the source code annotation, the automated analysis 
does not necessitate the modifications in front-end and the 
selection DAG builder class of the backend. We implement 
the automated analysis by writing a custom LLVM pass, 
named “Address Analysis Pass” (AAP), as shown in Fig. 7. 
AAP is invoked after register allocation and the generation 
of a basic instruction schedule. It calculates and appends 
tile IDs to memory objects by implementing Algorithm 1 
and needs to be executed before the SHAVE PostRAS pass. 
Once the tile IDs are appended, SHAVE PostRAS pass cre-
ates affinity-aware instruction schedule, as described in the 
following subsection.

6.3 � Affinity‑aware instruction scheduling (AAIS)

In LLVM framework, the compiler consists of multiple 
passes which perform particular transformations and opti-
mizations. In Myriad 2’s BC, a basic instruction schedule 
is generated by preceding passes before AAP, as shown in 
Fig. 7. We modify PostRAS pass to update basic instruc-
tion schedule based on tile IDs appended to memory objects 
in AAP. The modified PostRAS pass detects the conflicts 

among memory instructions by comparing tile IDs of their 
memory objects (i.e., testing the second condition defined 
in Sect. 5) and saves stall cycles by not scheduling them in 
the same clock cycle.

7 � Experimental setup

To evaluate our proposed optimization, we used 11 bench-
marks, as described in Sect. 3. Table 3 provides a brief 
description of these benchmarks, while the critical part of 
their source code is given in Table 4 of “Appendix”.

Benchmarks P1–P4 and P6 perform image addition or 
subtraction on different number and sizes of input images. 
Although a very basic operation, image addition, and sub-
traction is used as a step in other algorithms. Example of 
such algorithms includes usage of image differencing as 
a simple technique for change detection [51] providing a 
powerful interpretation of change in the tropical region and 
urban environment [52]. Image differencing is also used in 
mask mode radiography (for studying the propagation of 
contrast medium) and in motion-based segmentation [41]. 
Similarly, image addition is used in calculating the average 
face as a step in face recognition techniques based on eigen-
faces [53]. The integral image technique is another algorithm 
which uses the pixel addition and is widely used in fields 
of computer vision and computer graphics such as texture 
mapping and face detection [54, 55].

Benchmark P5 and P8 perform filtering operation, while 
P7 represents convolution. These operations are widely used 
for noise reduction, sharpening, edge detection, and blurring 
of images [41, 56]. Benchmark P9 represents white balanc-
ing operation which is a required stage of image-processing 
pipeline in modern digital cameras [57, 58]. Benchmark P10 
consists of histogram generation which is used as an initial 
step in image enhancement applications [59, 60]. Benchmark 

Fig. 7   Implementation of automated analysis as a custom pass in 
LLVM. Address analysis pass (AAP) appends affinity numbers to 
memory objects using Algorithm 1. Modified SHAVE PostRAS pass 
creates affinity-aware instruction schedule based on affinity numbers

Table 3   Brief description of benchmarks

Prog ID Description Number of 
inputs

Total input 
size (KB)

Output size (KB)

P1 Calculates the absolute difference of two input images 2 1 1
P2 Performs addition of four input images 4 20 20
P3 Performs addition of two input images 2 1.875 1.875
P4 Same as P3 but performs addition of two input images based on a mask input 3 0.5 0.5
P5 Calculates the output image as the scaled addition of five box filtered input images 5 1.07 1.07
P6 Addition of two scaled images 2 20 20
P7 Image convolution using a 3 × 3 mask 1 3.75 1.25
P8 Sum of absolute difference using a 5 × 5 window 2 9.375 1.875
P9 Application of white balancing operation on a RGB image 1 5.625 5.625
P10 Generation of histogram for the input image 1 7.56 –
P11 Similarity measurement between two images 2 0.625 4.03
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P11 measures the degree of similarity for a given pixel in 
the first image with pixels in the second image at different 
disparities. The similarity measurement is an important step 
in all stereo-matching algorithms [46, 61].

All benchmarks were executed on a Myriad 2 board with 
a single execution thread using both BC and AAC. For each 
benchmark, we measured the performance improvement as 
the percentage reduction in stall cycles and execution time 
when compared to the BC.

8 � Evaluation

As mentioned in Sect. 5.2.3, source code annotation is a 
time-consuming process and may need modifications at 
many places in the application source code. Therefore, 
we evaluate and demonstrate its working only for a single 
memory-intensive test program in the following subsection.

8.1 � Source code annotation for a simple 
memory‑intensive test program

Listing 1 shows the source code of a simple test program. 
The program defines an array of short type of length SIZE. 
The main() function calls the copyArray() function 
which writes to every second element of the array. For per-
formance evaluation, stalls and instruction execution cycles 
are measured for the for loop of copyArray() function.

A portion of assembly code generated by BC for Listing 
1 is shown in Fig. 8a. In SHAVE’s assembly, instructions 
scheduled in the same cycle are represented by placing ∥ 
symbol among them. The syntax of a Store instruction is 
LSU(0|1).STO.16 x,y,imm, and it moves the data 
from the register x to memory. The memory address is 

calculated using the content of the register y as the base 
address and imm as the displacement.

 

1 short A[ SIZE ] ;
2 void
3 a t t r i b u t e ( ( no i n l i n e ) ) copyArray ( short A){
4 i n i t i a l i z eT im e r s ( ) ;
5 startTimers ( ) ;
6 unsigned int i = 0 ;
7 for ( i = 0 ; i < SIZE ; i += 32){
8 A[ i ] = 0 ;
9 A[ i + 2 ] = 2 ;

10 A[ i + 4 ] = 4 ;
11 A[ i + 6 ] = 6 ;
12 A[ i + 8 ] = 8 ;
13 A[ i + 10 ] = 10 ;
14 A[ i + 12 ] = 12 ;
15 A[ i + 14 ] = 14 ;
16 A[ i + 16 ] = 16 ;
17 A[ i + 18 ] = 18 ;
18 A[ i + 20 ] = 20 ;
19 A[ i + 22 ] = 22 ;
20 A[ i + 24 ] = 24 ;
21 A[ i + 26 ] = 26 ;
22 A[ i + 28 ] = 28 ;
23 A[ i + 30 ] = 30 ;
24 }
25 stopTimers ( ) ;
26 }
27 int main ( ) {
28 copyArray (A) ;
29 return 0 ;
30 }

*

Listing 1 Source code of test program.

In the assembly code of Fig. 8a, i25 is a register contain-
ing the value of base_address + 64 . Numbers on the right of 
the assembly code show the clock cycles in which instruc-
tions are scheduled. For ease of discussion, we assume 
that base_address is zero. In cycle 1 of the assembly code, 
two Store instructions are scheduled simultaneously. One 
of them accesses address 60 (= 0 + 64 − 4), located in 
Tile 1 and R1 of the CMX slice, as shown in Fig. 8b. The 
other paired instruction accesses the location at address 8 
(= 0 + 64 − 56), also located in the same tile and the same 
region. As a result, the simultaneous scheduling of the two 

(a) (b)

Fig. 8   Instruction schedule generated by BC
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instructions incurs a stall cycle, as discussed in Case B2 of 
section 5.2. Same is true for cycles 4, 5, and 6.

On the other hand, the two store instructions scheduled in 
cycle 2 access addresses in different tiles and hence differ-
ent regions. Specifically, one of them accesses the address 
12 (=0+64 − 52), located in the Tile 1 and R1. The other 
paired instruction accesses the address 16 (= 0 + 64 − 48), 
located in the Tile0 and R0. Therefore, simultaneous sched-
uling does not incur a stall cycle as discussed in Case A of 
section 5.2. Same is true for cycles 3, 7, and 8. Note that 
the optimization potential for the given piece of assembly 
code shown in Fig. 8a (and not for the whole program) is 4 
as there are four cycles entertaining simultaneous memory 
accesses to the same region. The analysis of all (SIZE = 
2500) memory accesses shows that the program of Listing 
1 has an optimization potential of 234 cycles.

Listing 2 is functionally same as the Listing 1, but the 
source code is modified to append memory objects with 
their tile IDs. Line 1 and 2 define two macros, Tile0 and 
Tile1, using the custom defined attribute, i.e., movi-
Attr. As shown in lines 13–28, instead of accessing the 
array elements through array index, each element is accessed 
using a pointer carrying a tile ID of 0 or 1.

1 #define Ti le0 a t t r i b u t e ( ( moviAttr (0) ) )
2 #define Ti le1 a t t r i b u t e ( ( moviAttr (1) ) )
3 short A[ SIZE ] ;
4 void a t t r i b u t e ( ( no i n l i n e ) ) copyArray ( short A){
5 i n i t i a l i z eT ime r s ( ) ;
6 startTimers ( ) ;
7 Ti l e0 short temp1 , temp2 ;
8 Ti l e1 short temp3 , temp4 ;
9 unsigned int i = 0 ;

10 for ( i = 0 ; i < SIZE ; i += 32){
11 temp1 = A + i ; temp1 = 0 ;
12 temp2 = A + i + 2 ; temp2 = 2 ;
13 temp3 = A + i + 4 ; temp3 = 4 ;
14 temp4 = A + i + 6 ; temp4 = 6 ;
15 temp1 = A + i + 8 ; temp1 = 8 ;
16 temp2 = A + i + 10 ; temp2 = 10 ;
17 temp3 = A + i + 12 ; temp3 = 12 ;
18 temp4 = A + i + 14 ; temp4 = 14 ;
19 temp1 = A + i + 16 ; temp1 = 16 ;
20 temp2 = A + i + 18 ; temp2 = 18 ;
21 temp3 = A + i + 20 ; temp3 = 20 ;
22 temp4 = A + i + 22 ; temp4 = 22 ;
23 temp1 = A + i + 24 ; temp1 = 24 ;
24 temp2 = A + i + 26 ; temp2 = 26 ;
25 temp3 = A + i + 28 ; temp3 = 28 ;
26 temp4 = A + i + 30 ; temp4 = 30 ;
27 }
28 stopTimers ( ) ;
29 }
30 int main ( ) {
31 copyArray (A) ;
32 return 0 ;
33 }

*
*

*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

Listing 2 Source code of test program with static affin-
ity allocation.

Figure 9a shows a portion of assembly code generated 
by AAC for the Listing 2, where register i18 contains the 
value of base_address + 256 . For ease of discussion, we 
assume that base_address is zero. The layout of array ele-
ments in the CMX slice is shown in Fig. 9b. Assuming that 
the first element of the array is located at the address zero, 
the 16th element has an address of 32 (= 16 × 2, where 2 
is the size of each element) and the 18th element has an 
address of 36. Since lines 21 and 22 of Listing 2 append the 
same tile ID to 16th and 18th array elements, AAC does not 
schedule accesses to them in the same cycle. As shown in 
Fig. 9a, address 32 (= 256 − 224) is accessed simultane-
ously with address 12 (= 256 − 244) in cycle 10 and both 
addresses are located in different tiles and hence different 
regions. This saves a stall cycle for accessing the 16th array 

(a) (b)

Fig. 9   Instruction scheduling with static affinity allocation for memory references
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element (located at address 32) as compared to the schedule 
generated by BC, as shown in Fig. 8. In the same way, all 
the other stall-generating simultaneous accesses in Fig. 8 are 
avoided, resulting in significant reduction of stall cycles for 
the annotated version of the program.

Execution of the test program in Listing 1 on Myriad 2 
board takes 937 clock cycles (i.e., 765 instruction cycles 
plus 172 stalls). On the other hand, the test program of List-
ing 2 takes 697 clock cycles (i.e., 641 instruction cycles plus 
56 stalls). The remaining 56 stalls may belong to categories 
of bad speculation or core bound stalls. The difference of 
240 cycles between the two execution times is very close 
to the optimization potential of 234 cycles for the test pro-
gram in Listing 1. The significant improvement by 25.61% in 
execution time of the sample test program can be attributed 
to its memory-intensive nature.

8.2 � Experimental results for automated affinity 
analysis

In this subsection, we evaluate the classification of memory 
references using automated affinity analysis approach. We 
executed the benchmarks given in Table 3 on a Myriad 2 
board using both BC and AAC.

Figure 10 shows the breakdown of the execution time of 
benchmarks into instruction and stall cycles. The breakdown 

is shown for both, BC and AAC. Benchmarks executed using 
AAC show a significant reduction in stall cycles as com-
pared to the BC (e.g., P1, P2, P3, P4, P6, P9, and P10). The 
average reduction in stall cycles is by 69.83%.

Some benchmarks, such as P5 and P7, show a relatively 
lesser reduction in stall cycles. The difference in reduction 
of stall cycles across different benchmarks can be explained 
through their optimization potential. Figure 11 shows the 
breakdown of total requests for simultaneous memory access 
into three different cases. As explained in Sect. 5.2.3, BC 
and AAC generate the same schedule in Case A. In Case 
B1, AAC can possibly reduce the number of instruction 
cycles. However, AAC also reduces stalls in addition to a 
possible reduction in the number of instruction cycles in 
Case B2. In other words, higher the number of simultaneous 
memory requests belonging to Case A lower is the Optimi-
zation Potential of a benchmark. Figure 11 shows that both 
benchmarks, P5 and P7, have 20% of simultaneous memory 
requests belonging to Case A. Therefore, AAC achieves 
relatively lower reduction in stall cycles for P5 and P7 as 
compared to other benchmarks.

For most benchmarks (i.e., P1, P3, P4, P5, P6, P7, 
P9, and P10), the number of instruction cycles remains 
almost same when executed using BC and AAC. However, 
AAC execution of P2 increases the number of instruction 
cycles by 4.83%. The increase can be attributed to those 

Fig. 10   Breakdown of execution time into instruction and stall cycles for executions using BC and AAC​

Fig. 11   Breakdown of simultaneous memory access into three different cases. Case A: Memory objects belong to different tiles. Case B: Mem-
ory object belong to the same tile but different regions. Case B_2: Memory objects belong to the same region of the same tile
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simultaneously scheduled memory instructions in the BC-
generated schedule which cannot be successfully serialized 
by AAC through scheduling them in the same cycle with 
another suitable instruction. As a result, new cycles need to 
be inserted for scheduling of such instructions (as explained 
through Schedule 3 of Table 2 in Sect. 5). On the other hand, 
AAC execution of P8 and P11 shows 2.34% and 24.57% 
reduction in instruction cycles, respectively, as compared 
to BC. This reduction can be attributed to those simultane-
ously scheduled memory instructions in the BC-generated 
schedule which are successfully serialized by AAC through 
scheduling them in the same cycle with another suitable 
instruction (as explained through the Schedule 1 of Table 2 
in Sect. 5).

Figure 10 shows that stall cycles make up to 8.77% (i.e., 
P11) of execution time and 4% on average for BC execu-
tions. Since our proposed optimization focuses only on the 
reduction of memory stalls, the execution time improves up 
to 30% (i.e., P11) with an average of 5.79%. However, the 
significant average reduction by 69% in stall cycles suggests 
that the proposed optimization can substantially improve 
execution time for memory-intensive applications, as shown 
by a sample program in Sect. 8.1.

9 � Conclusion

In this paper, we propose the classification of memory ref-
erences as a compiler optimization to reduce the memory 
bound stalls incurred by an application running on a vision-
processing system (i.e., Myriad 2 MPSoC). Our solution 
consists of two steps: affinity analysis and affinity-aware 

instruction scheduling. We implemented two different 
approaches for affinity analysis, namely, source code anno-
tation and automated analysis.

While source code annotation approach facilitates more 
accurate prediction of the physical location of memory 
objects, it needs considerable effort by the programmer to 
modify the source code. On the other hand, automated analy-
sis relieves a programmer from the burden of modifying the 
source code, but employs certain assumptions about data 
placement. This may result with less accuracy in attaching 
affinity numbers to memory objects.

Experimental results show that by making the compiler 
aware of memory architecture and efficiently using the dual 
load-store units, memory stalls can be reduced significantly. 
Classification of memory references using source code anno-
tation reduces stalls by 67.44% for a memory-intensive pro-
gram, leading to 25.61% improvement in its execution time. 
On the other hand, automated analysis approach shows an 
average reduction by 69.83% in stall cycles with a modest 
improvement by 5.79% in execution time over a set of eleven 
different image-processing benchmarks.
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See Table 4
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Table 4   Source code of benchmarks

Prog
ID

Critical code Prog
ID

Critical code

P1 for ( j = 0 ; j < width ; j++){
i f ( i n 1 [ j ] > i n 2 [ j ] )

out [ 0 ] [ j ] = in 1 [ j ] − i n 2 [ j ] ;
else

out [ 0 ] [ j ] = in 2 [ j ] − i n 1 [ j ] ;
}

P2 for (unsigned int k = 0 ; k < width ; k++){
for (unsigned int disp = 0 ; d i sp <

d i s p a r i t i e s ; d i sp++){
out [ k d i s p a r i t i e s + disp ] = ( path0 [

k d i s p a r i t i e s + disp ] + path1 [
k d i s p a r i t i e s + disp ] + path2 [
k d i s p a r i t i e s + disp ] + path3 [
k d i s p a r i t i e s + disp ] ) / 4 ;

}
}

P3 for ( i = 0 ; i < ( int ) width ; i++){
add = src1 [ 0 ] [ i ] + src2 [ 0 ] [ i ] ;
i f ( add >= 255)

add = 255.0 f ;
i f ( add <= 0)

add = 0.0 f ;
dst [ 0 ] [ i ] = (unsigned char ) ( add ) ;

}

P4 for ( i = 0 ; i < ( int ) width ; i++) {
i f (mask [ 0 ] [ i ] > 0){

add = src1 [ 0 ] [ i ] + src2 [ 0 ] [ i ] ;
i f ( add >= 255)

add = 255.0 f ;
i f ( add <= 0)

add = 0.0 f ;
dst [ 0 ] [ i ] = (u8 ) ( add ) ;

}
}

P5 for ( i = 0 ; i < width ; i++){
sum = 0 ;
for (y = 0 ; y < 5 ; y++){

for (x = −2; x <= 2; x++){
sum += ( l i n e s [ y ] [ x ] ) ;

}
l i n e s [ y]++;

}
( out+i )=(u8 ) ( ( ( ha l f ) ( f loat )sum) ( ha l f

) 0 . 04 ) ;
}

P6 for ( co l = 0 ; co l < width ; c o l++){
for ( d i sp = 0 ; d i sp < d i s p a r i t i e s ; d i sp

++){
r e s u l t = ( alpha d i spa r i tyCos t [ c o l

d i s p a r i t i e s + disp ] + beta
adCost [ c o l d i s p a r i t i e s + disp ] )
/ normFactor ;

i f ( r e s u l t > 255) r e s u l t = 255;
d i spa r i tyCos t [ c o l d i s p a r i t i e s +

disp ] = r e s u l t ;
}

}

P7 for ( i = 0 ; i < inWidth /3 ; i++){
sum = 0.0 f ;
for (x = 0 ; x < 3 ; x++) {

for (y = 0 ; y < 3 ; y++)
sum += ( short f loat ) ( l i n e s [ x ] [ y −

1 ] conv [ x 3 + y ] ) ;
l i n e s [ x]+=3;

}
out [ 0 ] [ i ] = ( short f loat ) (sum) ;
}

P8 for ( i = 0 ; i < width ; i++){
sum = 0 ;
for (x = 0 ; x < 5 ; x++){

for (y = 0 ; y < 5 ; y++){
d i f f = l i n e s 1 [ x ] [ y − 2 ] − l i n e s 2 [ x

] [ y − 2 ] ;
i f ( d i f f < 0)

d i f f = 0 − d i f f ;
sum += d i f f ;

}
l i n e s 1 [ x]++;
l i n e s 2 [ x]++;

}
i f (sum >= 255)

sum = 255;
out [ 0 ] [ i ] = (unsigned char ) (sum) ;

}

P9 for ( i = 0 ; i < ( int ) width ; i++){
r = ( ( unsigned int ) r In [ i ] (unsigned

int ) awbCoef [ 0 ] ) >> 15 ;
g = (( unsigned int ) gIn [ i ] (unsigned

int ) awbCoef [ 1 ] ) >> 15 ;
b = (( unsigned int ) bIn [ i ] (unsigned

int ) awbCoef [ 2 ] ) >> 15 ;

rOut [ i ] = (unsigned short ) ( r > clamp [ 0 ]
? clamp [ 0 ] : r ) ;

gOut [ i ] = (unsigned short ) ( g > clamp [ 0 ]
? clamp [ 0 ] : g ) ;

bOut [ i ] = (unsigned short ) (b > clamp [ 0 ]
? clamp [ 0 ] : b) ;

}

P10 for ( i = 0 ; i < width ; i+=4){
int out1 = piHi s t1 ;
int out2 = piHi s t2 ;
int out3 = piHi s t3 ;
int out4 = piHi s t4 ;

p iH i s t1 = out1+1; p iH i s t2 = out2+1;
p iH i s t3 = out3+1; p iH i s t4 = out4+1;

p iH i s t1 = h i s t 1 + index1 ;
p iH i s t2 = h i s t 2 + index2 ;
p iH i s t3 = h i s t 3 + index3 ;
p iH i s t4 = h i s t 4 + index4 ;

index1 = (unsigned int ) i n l i n e [ i + 8 ] ;
index2 = (unsigned int ) i n l i n e [ i + 9 ] ;
index3 = (unsigned int ) i n l i n e [ i + 1 0 ] ;
index4 = (unsigned int ) i n l i n e [ i + 1 1 ] ;

}

P11 for ( int pos i t i onL = 0 ; pos i t i onL < (
width&0 x f f f f f f f c ) ; pos i t i onL++) {
unsigned int in1L = in1 [ pos i t i onL ] ;
unsigned int input [ DISPARITIES ] ;

#pragma un ro l l DISPARITIES
for ( int i = DISPARITIES−4; i >= 0;

i −=4)
(( uint4 ) &input [ i ] ) = ( ( uint4

) &in2 [ pos i t ionL−i −3])−>
s3210 ;

#pragma un ro l l DISPARITIES
for (unsigned int indexR = 0 ;

indexR < DISPARITIES ; indexR
++) {

unsigned int resultXOR = in1L ˆ
input [ indexR ] ;

std : : b i t s e t <32> b i t s = resultXOR ;
out [ pos i t i onL DISPARITIES +

indexR ] = (unsigned char )
b i t s . count ( ) ;

}
}

*
*
*
*
*

* * *

*

*

*

*
*

* *

*

*

*

*
*

*
*
*
*

*
*

*
*

*

*
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