
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2020) 17:853–870
https://doi.org/10.1007/s11554-018-0830-8

ORIGINAL RESEARCH PAPER

Exploiting architectural features of a computer vision platform
towards reducing memory stalls

Naveed Ul Mustafa1  · Martin J. O’Riordan2 · Stephen Rogers2 · Ozcan Ozturk1

Received: 24 September 2017 / Accepted: 1 October 2018 / Published online: 9 October 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Computer vision applications are becoming more and more popular in embedded systems such as drones, robots, tablets,
and mobile devices. These applications are both compute and memory intensive, with memory bound stalls (MBS) making
a significant part of their execution time. For maximum reduction in memory stalls, compilers need to consider architectural
details of a platform and utilize its hardware components efficiently. In this paper, we propose a compiler optimization for a
vision-processing system through classification of memory references to reduce MBS. As the proposed optimization is based
on the architectural features of a specific platform, i.e., Myriad 2, it can only be applied to other platforms having similar
architectural features. The optimization consists of two steps: affinity analysis and affinity-aware instruction scheduling. We
suggest two different approaches for affinity analysis, i.e., source code annotation and automated analysis. We use LLVM
compiler infrastructure for implementation of the proposed optimization. Application of annotation-based approach on a
memory-intensive program shows a reduction in stall cycles by 67.44%, leading to 25.61% improvement in execution time.
We use 11 different image-processing benchmarks for evaluation of automated analysis approach. Experimental results show
that classification of memory references reduces stall cycles, on average, by 69.83%. As all benchmarks are both compute
and memory intensive, we achieve improvement in execution time by up to 30%, with a modest average of 5.79%.

Keywords  Computer vision · Compiler optimization · Execution time · Memory bound stalls

1  Introduction

Computer vision (CV) is a rapidly growing field, mostly
devoted to capturing, analysis, modification, and understand-
ing of images [1, 2]. With the arrival of high-resolution cam-
eras in mobile devices, CV applications are becoming more
popular [1]. Embedded systems such as wearable devices,
drones, robots, and tablets are supposed to support CV

applications [3]. Domains that employ CV include surveil-
lance [4, 5], gesture recognition [6], face tracking [7, 8],
medical imaging [9, 10], automotive safety [11, 12], and
food industry [13–15], among others.

Computer vision applications are computationally expen-
sive and mostly required to execute in real time [1]. How-
ever, embedded platforms are limited on the power budget.
There are two architectural solutions to reduce the power
consumption and running the CV algorithms faster on
embedded systems. One popular approach is to use a multi-
core platform. In general, two smaller cores collectively
occupying the same area and consuming the same energy as
compared to a single large core can provide 70–80% higher
performance [16]. The other possible approach is using
the dedicated optimized cores to implement the commonly
used algorithms. This can be achieved using domain-specific
hardware accelerators [1]. Besides employing architectural
solutions, it is critical for a compiler to reduce the execution
time of applications by taking into account the architectural
features of the hardware platform [17].

 *	 Naveed Ul Mustafa
	 naveed.mustafa@bilkent.edu.tr

	 Martin J. O’Riordan
	 martin.oriordan@movidius.com

	 Stephen Rogers
	 stephen.rogers@movidius.com

	 Ozcan Ozturk
	 ozturk@cs.bilkent.edu.tr

1	 Department of Computer Engineering, Bilkent University,
Ankara, Turkey

2	 Movidius-Intel, Dublin, Ireland

http://orcid.org/0000-0002-0650-3464
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-018-0830-8&domain=pdf

854	 Journal of Real-Time Image Processing (2020) 17:853–870

1 3

There have been various efforts to design vision-process-
ing systems targeting CV applications such as [2, 17–19],
among others. One such effort is Myriad 2 platform from
Movidius [20]. It is a low-power multi-processor system on
chip (MPSoC) that uses an array of very long instruction
word (VLIW) processors with vector and single instruction
multiple data (SIMD) execution capabilities [21]. Each pro-
cessor supports two load and store units (LSUs) to overlap
latency of memory operations. Since CV applications are
heavy in both computation and memory requirements [22],
the platform features a high bandwidth memory subsystem.
However, being unaware of the memory organization, the
compiler of Myriad 2 platform schedules memory accesses
inefficiently. This results in unnecessary memory stalls and
hence higher execution time for applications.

In this paper, we motivate the need to reduce memory
bound stalls (MBS) in CV applications and identify the
problem faced by the compiler of Myriad 2 platform in
reducing such stalls. Our main contributions in this paper
can be summarized as follows.

1.	 We propose an optimization through classification of
memory references aiming to reduce MBS. The optimi-
zation consists of two steps: affinity analysis and affin-
ity-aware instruction scheduling (AAIS). While affinity
analysis predicts the physical memory location for each
memory object in the application’s source code, AAIS
generates a stall-saving instruction schedule based on
the results of affinity analysis step. A compiler equipped
with the proposed optimization is named an affinity-
aware compiler (AAC).

2.	 We propose two different affinity analysis approaches
along with their motivation, namely, source code annota-
tion and automated analysis.

The proposed optimization is based on efficiently utilizing
the hardware components of Myriad 2 and, therefore, not
applicable as it is to other platforms. However, it is expected
to be relatively easy to adapt the optimization for other CV
platforms with similar architectural features.

We implement the proposed optimization on LLVM com-
piler infrastructure [23] and evaluate it by running bench-
marks on the Myriad 2 board using the base compiler (BC)
and the AAC. We apply annotation-based analysis approach
only on a simple memory-intensive test program. It shows
the reduction in stall cycles by 67.44% resulting in 25.61%
improvement in the execution time. We evaluate the auto-
mated analysis approach by running 11 different compute
and memory-intensive image-processing benchmarks on a
Myriad 2 board using the AAC. Results show that AAC
reduces stall cycles by 69.83% with a modest improvement
in the execution time by 5.79%, on average, as compared to
the BC.

The rest of this paper is organized as follows. Sec-
tion 2 describes the related work, while Sect. 3 motivates
the reduction of MBS for CV applications. Section 4 pro-
vides the necessary details of a Myriad 2 platform needed
to understand this work. Section 5 formulates the problem
faced by the compiler in reducing MBS and proposes the
solution. Section 6 provides the implementation details.
Methodology for evaluation of proposed optimization is
described in Sect. 7, while Sect. 8 shows evaluation results.
Section 9 concludes this paper.

2 � Related work

Memory bound stalls cause underutilization of the compute
logic due to memory latency and hence become a major hur-
dle in improving the execution time of an application [24].
Various approaches have been proposed to reduce memory
stalls, such as data mapping in multi-bank environment,
using non-uniform memory access (NUMA)-based design
and architectural improvements in the memory and compute
fabric.

Platforms with multi-bank memory system mitigate the
problem by mapping simultaneously requested data on dif-
ferent memory banks. Researchers have presented proposals
to implement data mapping as a back-end compiler optimi-
zation [25, 26] as well as by analyzing memory access pat-
tern at higher levels [27–29] for single-processor systems.
Other works, such as [30, 31], propose approaches for map-
ping data of different applications to multiple memory banks
in a multi-core environment.

NUMA is commonly used in modern multi-processor
systems to avoid the bottleneck of shared memory accesses
[32]. It provides asymmetric memory bandwidth and latency
characteristics [33]. In other words, cost of accessing data
located in remote memory modules is higher than access-
ing data blocks in local memory modules. Memory affinity
is a way to reduce this cost by placing the data in memory
modules closer to the processor executing the computation
thread [34] and guarantees to improve memory bandwidth
and latency [35].

Many researchers have contributed in the context of mem-
ory affinity to reduce memory access cost on NUMA plat-
forms. For example, an NUMA API for Linux was proposed
in [36] which allows programmers to make memory alloca-
tions from a specific node or memory module, in addition to
binding threads to specific CPUs. Different algorithms have
been proposed to spread application data across different
memories of an NUMA platform, such as round-robin, first
touch affinity and next-touch affinity [32, 37]. An extension
to Linux kernel to add support for the affinity-on-next-touch
algorithm is reported in [38].

855Journal of Real-Time Image Processing (2020) 17:853–870	

1 3

In this work, we exploit the availability of dual load-store
Units to processors of a vision-processing system and its
NUMA architecture, where memory is divided into multiple
slices, each one having an affinity to one of the processors.
Unlike the traditional memory affinity approach focusing on
the reduction of latency by placing data closer to the com-
puting processor [32, 33, 37, 39], the purpose of our affinity
analysis is to reduce the memory bound stalls by taking into
account memory organization and hence efficiently schedul-
ing memory accesses.

Another approach to reducing memory stalls, more
related to our work, is optimization of the memory sub-
system of the execution platform and related architectural
components of the compute fabric. Like Myriad 2 platform,
Snapdragon 800 [40], MaPU [17], and TI AcceleratorPac
[18] use VLIW processors as main execution units [19]
combined with RISC cores and other dedicated components.
Unlike these systems using unified memory, Myriad 2 uses
NUMA architecture enabling multiple cores to access their
local memory slices simultaneously and hence make a con-
tribution in reducing memory stalls.

Hexagon DSP on Snapdragon 800 is a VLIW featuring
two data units. Each data unit is capable of executing a load,
a store or an ALU instruction but unable to pack two mem-
ory accesses with one or more ALU instructions in a single
cycle. On the other hand, VLIW processors of Myriad 2 are
capable of packing two memory accesses with up to two
ALU instructions in a single cycle.

MaPU platform contains ten processing cores with uni-
fied memory scheme. A core can make up to three memory
accesses simultaneously but into different physical memo-
ries. Furthermore, a physical memory cannot be accessed
by different cores simultaneously. As compared to MaPU,
Myriad 2 supports simultaneous accesses to memory at two
levels. First, multiple cores can access their local memory
slices simultaneously due to NUMA architecture. Second,
each core can make up to two simultaneous accesses into
its local slice.

As noted by designers of MapU [17], compilers are a
major source of the lower performance of execution plat-
forms as they use a simplified model of processor architec-
ture and do not consider detailed architectural features of the

platform. Since our proposed compiler optimization is based
on comparatively better architectural features of Myriad 2
platform (such as dual load-store units per processor and a
high bandwidth memory subsystem), as shown in Table 1, it
is not only different than Hexagon DSP and MaPU, but has
a potential of achieving higher performance.

3 � Motivation

The execution time of an application can be divided into two
broad categories: commit cycles and stall cycles. A clock
cycle is categorized as a commit cycle if at least one instruc-
tion is retired during the cycle; otherwise, it is categorized
as a stall cycle. Various reasons such as unavailability of
functional units, bad branch prediction, or data dependencies
result in stall cycles. The unavailability of data required for
instruction execution incurs extra clock cycles in the form
of a cache miss penalty. Such cycles are termed memory
bound stalls (MBS).

We characterize a set of CV benchmarks to understand
the distribution of execution time across different categories.
The set consists of benchmarks performing basic image-pro-
cessing operations such as image addition and subtraction
[41], box filtering [42], convolution [43], sum of absolute
difference [44], white balancing operation [45], histogram
generation, and similarity measurement between pixels of
two input images [46]. “Appendix” provides the critical part
of the source code for benchmarks. We use Intel’s VTune
performance analyzer [47] to breakdown the execution time
of benchmarks into commit cycles (CC), bad speculation
stalls (BSS), MBS, core bound stalls (CBS), and front-end
bound stalls (FEBS).

As shown in Fig. 1, on average, MBS make almost 33%
of the total execution time. It suggests the criticality of MBS
in reducing the execution time of an application. Therefore,
a platform running CV applications should have an efficient
memory architecture supporting the data transactions with
high bandwidth and low latency. In addition to that the soft-
ware infrastructure, such as compiler and assembler, should

Table 1   Comparison of architectural features of different CV platforms

Platform Uses NUMA
architecture

Support for packing more than two memory
instructions with an ALU instruction

Support for multiple simultaneous accesses
by a single processor to the same physical
memory.

Snapdragon 800 (with
Hexagon DSP)

× × ✓

MaPU × ✓ ×

TI AcceleratorPAC × Details not available Details not available
Myriad 2 ✓ ✓ ✓

856	 Journal of Real-Time Image Processing (2020) 17:853–870

1 3

take advantage of architectural features offered by the plat-
form to reduce MBS.

4 � Myriad 2 architecture

Figure 2, based on [48, 49], shows the architectural layout
of a Myriad 2 Platform developed by Movidius Ltd [20]. It
is an MPSoC containing multiple heterogeneous processors,
hardware accelerators, memories, and external interfaces.
Target application domain for the Myriad 2 platform is video
filtering and image recognition in embedded systems [49].

Myriad 2 contains 12 streaming hybrid architecture vec-
tor engine (SHAVE) and two reduced instruction set com-
puting (RISC) processors. SHAVE processors are the real
workhorse of Myriad 2 and are designed to crunch the com-
plex imaging and vision algorithms [48]. The platform offers
a 2 MB connection matrix (CMX) memory along with a
number of programmable hardware accelerators for vision
processing. Accelerators are connected to the CMX memory
via a crossbar [3].

SHAVE is a VLIW processor containing a set of func-
tional units which are fed with operands from three differ-
ent register files [21]. The processor contains optimized
functional units such as a branch and repeat unit (BRU),
a compare and move unit (CMU), arithmetic units, and

Fig. 1   Benchmarks: P1 = subtraction of two images, P2 = addition
of four images, P3 = addition of two images, P4 = addition of two
images based on a mask input, P5 = box filtering using 5 × 5 mask,
P6 = addition of two scaled images, P7 = convolution using 3 × 3

mask, P8 = sum of absolute difference using a 5 × 5 window, P9 =
white balancing operation, P10 = histogram generation, and P11 =
similarity measurement between pixels of two images

Fig. 2   Architectural layout of a Myriad 2 platform

857Journal of Real-Time Image Processing (2020) 17:853–870	

1 3

two load-store units (LSUs). Each SHAVE processor can
execute two load-store instructions simultaneously.

4.1 � CMX memory

As shown in Fig. 3a, the 2 MB CMX memory is divided
into 16 different slices, each with a size of 128 KB. A
slice can hold both instructions and the data for a program
running on a processor. Each of the first twelve slices
(i.e., slice 0–slice 11) has an affinity to 1 of 12 SHAVE
processors. Since Myriad 2 is a non-uniform memory
access (NUMA) platform, it is more efficient in terms
of latency and energy consumption for a processor to
access its local slice (i.e., slice 0 for SHAVE 0). However,
processors can also access any other slice in the CMX
memory but with a higher latency. Therefore, placement
of data in the local slice of a processor is recommended.

A slice is further divided into four regions, named

R0, R1, R2, and R3 in Fig. 3b, each with a size of 32
KB. In principle, the architectural design of the CMX
memory allows four simultaneous memory accesses in
four different regions of a given slice. Each region is a
single physical block of random access memory (RAM)
with a single chip select and a single set of address and
data paths. Therefore, simultaneous memory accesses in
the same region are not recommended as they result in
stall cycles due to clash among memory ports. Since a
SHAVE processor has only two LSUs, only two simul-
taneous memory accesses are practically possible into a
single CMX slice. Simultaneous memory accesses can
be performed in any of the two different regions, e.g., R0
and R1 or R0 and R2.

5 � Problem and proposed solution

In this section, we describe the limitations of a generic com-
piler in efficiently accessing the CMX memory to reduce
the MBS. We also propose a solution to overcome these
limitations to generate a stall-saving instruction schedule
and hence achieve the faster execution of an application.

5.1 � Problem formulation

In CV applications, generally, a data frame is processed by
applying a filter across all of its pixels. A data frame can
occupy a single region of a given slice, multiple regions, or
even multiple slices. Since Myriad 2 is an NUMA platform,
it is important to place a data frame in a slice local to the
computing processor to reduce memory latency.

Another way to reduce memory stalls is to issue mul-
tiple simultaneous memory accesses. Since SHAVE is a
VLIW processor with two LSUs (0 and 1), it is a wastage of
resources to perform all memory accesses in a serial fashion.
Therefore, the compiler supports scheduling of up to two
accesses to a given CMX slice in a single cycle provided
that both LSUs are available. However, a check is required
to avoid simultaneous accesses in the same region of a given
slice due to the clash between memory ports, as described in
Sect. 4.1. Since BC does not perform this check and always
schedules simultaneously requested memory accesses in the
same cycle, it may result in blocking of one memory instruc-
tion by another leading to memory stalls.

Such stall cycles can be avoided by making the compiler
aware of the architectural limitations of the CMX memory.
If provided with the information about the physical loca-
tion of each memory object in a CMX slice, the compiler
can generate optimized instruction schedule leading to the
reduction of MBS.

Fig. 3   Organization of the CMX
memory and its interface with
SHAVE processors in Myriad 2

(a) (b)

858	 Journal of Real-Time Image Processing (2020) 17:853–870

1 3

It is important to clarify that BC is already equipped
with necessary support needed to resolve conflicts among
multiple SHAVE processors and/or accelerators requesting
simultaneous accesses to the same memory slice. Therefore,
the focus of this work is not the conflict resolution among
multiple processors but handling simultaneous accesses by
a single processor to the same slice.

5.2 � Proposed solution

Our proposed solution consists of two steps. In the first step,
named affinity analysis, each memory object is appended
with an affinity number at compile time to predict its physi-
cal location in the CMX slice.

In the second step, i.e., AAIS, the scheduler uses the
appended affinity numbers for efficient scheduling of mem-
ory instructions. In the AAIS, two instructions requesting
simultaneous access in the same CMX slice are scheduled
in the same cycle only if two conditions are satisfied:

–	 Condition 1: Both LSUs are available.
–	 Condition 2: Memory objects to be accessed by instruc-

tions have different affinity numbers.

If any one of these two conditions is not satisfied, instruc-
tions are not scheduled in the same cycle. In the rest of this
paper, we assume that the first condition is always true.

AAIS reduces stall cycles by avoiding blocking of one
memory instruction by another. A compiler using AAIS
is named AAC. Otherwise, the scheduling is named basic
instruction scheduling (BIS) and the compiler as BC. Note
that BC tests only the first condition for simultaneous sched-
uling of memory instructions, while AAC tests both of them.

To understand the calculation of affinity numbers, let us
divide CMX slice into two logical vertical sections named
Tile0 and Tile1. This logical division is shown in Fig. 3b,
where each tile has two physical regions. Let us consider two
instruction, Inst1 and Inst2, requesting access in the same

CMX slice simultaneously with addresses for their respec-
tive memory objects as BP + �1 and BP + �2 , where BP is
a base address and � is the offset from BP. Since the base
address is not known at compile time, only offset value is to
be used to infer the physical location of a memory object.

Assuming that base address is 16-byte aligned (i.e., a
multiple of 16), offset can be used to find the ID of the tile a
memory object belongs to. Since each tile is 8-byte wide, if
the offset address is in the range of [8 × n, (8 × (n + 1)) − 1] ,
then the memory belongs to Tile 1. Otherwise, the memory
object belongs to Tile 0. With n defined as an odd number,
the expression [8 × n, (8 × (n + 1)) − 1] represents ranges
such as [8,, 15], [24,, 31] and so on. Note that an
offset address within these ranges will always have its third
bit set to 1. In other words, using a mask = 0 × 008 , a mem-
ory object with address BP + � belongs to Tile 0 if bitwise
and operation between � and mask equals zero and to Tile
1 otherwise.

Depending on the results of masking operations, there
are two cases for the calculation of affinity numbers in the
affinity analysis step.

–	 Case A: (�1&mask)! = (�2&mask) . In this case, memory
objects of Inst1 and Inst2 belong to different tiles, guar-
anteeing that they also belong to different regions, as
shown in Fig. 4. Since the AAIS performs a non-equal-
ity test on affinity numbers, tile IDs can be appended
to memory objects in place of region IDs in the affinity
analysis step without the loss of correctness.

	  As the two memory objects belong to different regions
and each region has its own set of memory ports, there is
no architectural restriction on simultaneous execution of
Inst1 and Inst2. In this case, both BIS and AAIS gener-
ate the same instruction schedule. BIS schedules Instr1
and Instr2 in the same cycle without testing the second
condition. On the other hand, AAIS detects that second
condition is true and hence schedules the instructions in
the same cycle.

Fig. 4   Different scenarios where two memory objects belong to different tiles. BP + � is the address of a memory object, where BP is the base
address and � is the offset from BP

859Journal of Real-Time Image Processing (2020) 17:853–870	

1 3

–	 Case B: (�1&mask) = (�2&mask) . In this case, memory
objects of Inst1 and Inst2 belong to the same tile, but
they may or may not belong to the same region. This
can be established by calculating the absolute difference
between two offsets, i.e., Diff = abs(�1 − �2) . An abso-
lute difference of greater than or equal to the size of two
regions (i.e., 64 K bytes) guarantees that the two memory
objects belong to different regions in the same tile, as
shown in Fig. 5a. However, there is no such guarantee
when Diff is less than 64K bytes. Memory objects may
(e.g., Fig. 5b) or may not (e.g., Fig. 5c, d) belong to dif-
ferent regions in the same tile.

	  Since BP is not known at compile time, it is not pos-
sible to calculate region numbers for the situations, as
shown in Fig. 5b–d. Therefore, we pessimistically assume
that the two memory objects belonging to the same tile
always belong to the same region. In other words, like
Case A, we suggest appending the tile ID of a memory
object as its affinity number in the affinity analysis step.
In the following discussion, we break Case B into two
sub-cases and compare the AAIS with the BIS in each
sub-case.

–	 Case B1: Memory objects belong to the same tile but
different regions. Table 2 compares three different BIS
and AAIS-generated schedules for Case B. Let us assume
that all three schedules are generated by BIS for the sce-
nario, as depicted in Fig. 5a, b. BIS-generated instruction
schedule 1 consists of one ADD instruction, two mem-
ory instructions, and an SUB instruction. With memory
objects located in different regions (of the same tile),
scheduling of memory instructions by BIS in the same
cycle (indicated by placing ∥ symbol between them in
cycle 2) does not incur a stall. The BIS-generated sched-
ule has an execution time of three cycles.

	  The corresponding AAIS-generated schedule is shown
in the third column. Since memory objects belong to
the same tile, the affinity analysis step pessimistically
assumes that they also belong to the same region (which
is not true) and appends their tile IDs as their affinity
numbers. This makes the second condition to be false.
As a result, AAIS serializes memory instructions by
scheduling one of them in the same cycle with the ADD
instruction and the other one with the SUB instruction.
This reduces the execution time from 3 to 2 cycles as
compared to BIS. Note that, SHAVE is a VLIW pro-
cessor, capable of executing multiple instructions in the
same cycle depending on the availability of functional
units.

	  The BIS-generated instruction schedule two consists of
one ADD instruction and two memory instructions. The
schedule incurs no stall cycle and has an execution time
of 2 cycles. As shown in the third column, AAIS serial-
izes the two memory instructions by scheduling one of
them with the ADD instruction. Although it changes the
schedule as compared to BIS, the execution time remains
the same as there is no change in the number of instruc-
tion cycles and stalls.

	  The BIS-generated instruction schedule three consists
of only two memory instructions. The schedule incurs no
stall cycle and has an execution time of 1 cycle. On the
other hand, AAIS serializes the two memory instructions
by scheduling them in different cycles. This increases the
execution time from 1 to 2 cycles as compared to BIS.

	  In summary, AAIS in Case B1 does not change
the stall cycles as compared to BIS. However, it may
increase, decrease, or not affect the number of instruc-
tion cycles depending on the BIS-generated instruction
schedule.

(a) (b) (c) (d)

Fig. 5   Different scenarios where two memory objects belong to the
same tile. Figure 5a shows that absolute difference Diff between off-
sets of two memory objects is greater than or equal to 64 K bytes,
indicating that two memory objects belong to different regions. Fig-

ure 5b shows Diff less than 64 K bytes and memory objects belong
to different regions. Figure 5c, d shows Diff less than 64 K bytes, but
memory objects belong to the same region

860	 Journal of Real-Time Image Processing (2020) 17:853–870

1 3

–	 Case B2: Memory objects belong to the same tile and
the same region. Let us assume that all BIS schedules
shown in Table 2 are generated for the case, as depicted
in Fig. 5c, d. With memory objects located in the same
region (of the same tile), the two memory instructions
scheduled in the same cycle by BIS in schedule 1 incur
a stall. This results in total execution time of 4 cycles
(i.e., three instruction cycles and one stall). In the cor-
responding AAIS-generated schedule, affinity analysis
step assumes that memory objects belonging to the same
tile also belong to the same region (which is true in this
case). As a result, AAIS serializes memory instructions
by scheduling them in different cycles (with ADD and
SUB instructions). This not only avoids the stall cycle,
but also reduces the instruction cycles. Hence, the execu-
tion time reduces from four to two cycles as compared to
BIS.

	  The BIS-generated instruction schedule 2 incurs one
stall cycle for two memory instructions scheduled in the
same cycle. This results in an execution time of three
cycles, i.e., two instruction cycles and one stall. However,
AAIS serializes the two memory instructions by schedul-
ing one of them with the ADD instruction. This saves the
stall cycle and hence reduces the execution time from 3
to 2 cycles.

	  The BIS-generated instruction schedule 3 consists of
only two memory instructions and incurs a single stall
cycle, resulting in an execution time of two cycles. On
the other hand, AAIS serializes the two memory instruc-
tions by scheduling them in different cycles. This avoids
the stall cycle but also increase the number of instruction
cycles resulting in no effect on the execution time.

	  In summary, AAIS in Case B2 reduces the stall cycles
as compared to BIS. However, it may increase, decrease,
or not affect the number of instruction cycles depending
on the BIS-generated instruction schedule.

It is clear from the above discussion that AAIS can
reduce stall cycles when simultaneous accesses are
requested into the same region of a tile. Furthermore,
above discussion shows that tile IDs can be used as affin-
ity numbers without the loss of correctness. It is impor-
tant to mention that affinity numbers are merely used as a

compile time prediction for the physical location of mem-
ory objects and do not provide any means of controlling
data placement.

We propose two different approaches for the first step
of our solution, i.e., affinity analysis. In the source code
annotation approach, tile IDs are appended to memory
objects by a programmer using custom attributes. In the
automated analysis approach, tile IDs are inferred from the
source code by analyzing the relative addresses of memory
objects. Note that any one of these two approaches can be
combined with the second step (i.e., AAIS) to construct
the complete solution. Both approaches are discussed in
the following subsections.

5.2.1 � Source code annotation

It is a compile time approach that involves appending the
tile ID to each memory object in the application source
code. This is achieved by defining a custom attribute and
making the compiler aware of its syntax and semantics.

In annotation-based approach, the difference between
predicted and actual physical locations of memory objects
depends upon the knowledge a programmer has about the
layout of application data. Tile IDs can be appended more
accurately by having a good understanding of data struc-
tures used in the application and their access patterns.
For example, tile IDs to be appended to array elements
depend upon the location of the first element in a CMX
slice (i.e., Tile 0/1), offset from the base address, and the
byte alignment.

Figure 6 shows different predictions for physical loca-
tions of array elements by appending tile IDs through
source code annotation. The actual placement of array ele-
ments in the CMX slice is shown in Fig. 6e. Let us assume
that the BC simultaneously schedules the access to A[0] in
the same cycle with A[3] and access to A[1] in the same
cycle with A[2]. This will result in two stall cycles as two
memory accesses will be blocked due to a clash between
memory ports. In other words, this particular example has
optimization potential of 2. Figure 6b shows the best pre-
diction of physical locations as it reflects the real mapping
of array elements in the CMX slice.

(a) (b) (c) (d) (e)

Fig. 6   Predictions of physical locations through source code annotation

861Journal of Real-Time Image Processing (2020) 17:853–870	

1 3

5.2.2 � Automated analysis

To avoid the modification of application source code and
to automate the process of appending tile IDs to memory
objects, we also propose the automated analysis. It is also a
compile time approach like source code annotation.

Since the base address of a memory object is not known
at compile time, the automated approach uses relative
addresses for calculating tile IDs with the following assump-
tions about data storage.

1.	 Data structures are stored in memory in a sequential
manner.

2.	 The first element of a data structure is always located at
the 16-byte boundary.

We propose an algorithm, shown in Algorithm 1, for auto-
mated analysis of addresses and appending tile IDs to mem-
ory objects. It is applicable only to data elements belonging
to the same data structure and it operates on the level of each
function independently.

Algorithm 1 operates as follows. For each memory
instruction i in the function Func, the address of its mem-
ory object is retrieved into memObject_i (lines 1–3) and
then broken into the base address and the offset (line 4). Ta

bl
e 

2  
C

om
pa

ris
on

 o
f A

A
IS

 w
ith

 B
IS

 in
 C

as
e

B 

Sc
h

#
B

IS
A

A
IS

C
as

e
B1

: M
em

or
y

ob
je

ct
s o

f I
ns

t1
 a

nd
 In

st
2

be
lo

ng
 to

 th
e

sa
m

e
til

e
bu

t d
iff

er
en

t r
eg

io
ns

.
C

as
e

B2
: M

em
or

y
ob

je
ct

s o
f I

ns
t1

 a
nd

 In
st

2
be

lo
ng

 to
 th

e
sa

m
e

til
e

an
d

th
e

sa
m

e
re

gi
on

.

1
1)

 IA
U

.A
D

D
 I1

0,
 I1

1,
 I1

2
1)

 IA
U

.A
D

D
 I1

0,
 I1

1,
 I1

2
∥
 L

SU
1.

LD
.3

2
I1

, I
8

N
um

be
r o

f s
ta

lls
 d

oe
s n

ot
 c

ha
ng

e,
 w

hi
le

nu

m
be

r o
f i

ns
tru

ct
io

n
cy

cl
es

 re
du

ce
s (

fro
m

3

to
 2

) i
n

ca
se

 o
f A

A
IS

N
um

be
r o

f s
ta

lls
 a

nd
 in

str
uc

tio
n

cy
cl

es
 re

du
ce

(f

ro
m

 1
 to

 0
 a

nd
 fr

om
 3

 to
 2

, r
es

pe
ct

iv
el

y)
 in

ca

se
 o

f A
A

IS
2)

 L
SU

0.
LD

.3
2

I0
, I

7
∥
 L

SU
1.

LD
.3

2
I1

, I
8

2)
 L

SU
0.

LD
.3

2
I0

, I
7
∥
 IA

U
.S

U
B

 I2
, I

3,
 I4

Ex
ec

ut
io

n
tim

e
re

du
ce

s (
fro

m
 3

 to
 2

 c
yc

le
s)

as

 c
om

pa
re

d
to

 B
IS

Ex
ec

ut
io

n
tim

e
re

du
ce

s (
fro

m
 4

 to
 2

 c
yc

le
s)

 a
s

co
m

pa
re

d
to

 B
IS

3)
 IA

U
.S

U
B

 I2
, I

3,
 I4

2
1)

 IA
U

.A
D

D
 I1

0,
 I1

1,
 I1

2
1)

 IA
U

.A
D

D
 I1

0,
 I1

1,
 I1

2
∥
 L

SU
1.

LD
.3

2
I1

, I
8

N
um

be
r o

f s
ta

lls
 a

nd
 in

str
uc

tio
n

cy
cl

es
 d

oe
s

no
t c

ha
ng

e
N

um
be

r o
f s

ta
lls

 re
du

ce
s (

fro
m

 1
 to

 0
) b

ut

nu
m

be
r o

f i
ns

tru
ct

io
n

cy
cl

es
 d

oe
s n

ot

ch
an

ge
2)

 L
SU

0.
LD

.3
2

I0
, I

7
∥
 L

SU
1.

LD
.3

2
I1

, I
8

2)
 L

SU
0.

LD
.3

2
I0

, I
7

Ex
ec

ut
io

n
tim

e
re

m
ai

ns
 sa

m
e

as
 in

 B
IS

 (i
.e

.,
2

cy
cl

es
)

Ex
ec

ut
io

n
tim

e
re

du
ce

s (
fro

m
 3

 to
 2

 c
yc

le
s)

 a
s

co
m

pa
re

d
to

 B
IS

3
1)

 L
SU

0.
LD

.3
2

I0
, I

7
∥
 L

SU
1.

LD
.3

2
I1

, I
8

1)
 L

SU
1.

LD
.3

2
I1

, I
8

N
um

be
r o

f s
ta

lls
 d

oe
s n

ot
 c

ha
ng

e
bu

t n
um

-
be

r o
f i

ns
tru

ct
io

n
cy

cl
es

 in
cr

ea
se

s (
fro

m
 1

to

 2
) i

n
ca

se
 o

f A
A

IS

N
um

be
r o

f s
ta

lls
 re

du
ce

s (
fro

m
 1

 to
 0

) a
nd

nu

m
be

r o
f i

ns
tru

ct
io

n
cy

cl
es

 in
cr

ea
se

s (
fro

m

1
to

 2
) i

n
ca

se
 o

f A
A

IS
2)

 L
SU

0.
LD

.3
2

I0
, I

7
Ex

ec
ut

io
n

tim
e

in
cr

ea
se

s (
fro

m
 1

 to
 2

 c
yc

le
s)

as

 c
om

pa
re

d
to

 B
IS

Ex
ec

ut
io

n
tim

e
re

m
ai

ns
 sa

m
e

as
 in

 B
IS

 (i
.e

.,
2

cy
cl

es
)

862	 Journal of Real-Time Image Processing (2020) 17:853–870

1 3

If not already appended with a tile ID, one is calculated
for memObject_i (lines 5–7). Note that the width of each
tile of a CMX slice is 8 bytes, as shown in Fig. 3b. Tile
ID is decided based on the masking of offset value (i.e.,
Offset_memObject_i ) with 0 × 008. The inner for loop
(line 9–17) scans all other memory instructions in Func
to find if they access a memory object with the same base
address as memObject_i but with a different offset value.
The condition of same base address ensures that memory
objects belong to the same data structure. If the condi-
tion is true and new memory object (i.e., memObject_j )
is not already appended with a tile ID, it is appended
with a one based on masking of its offset value (i.e.,
Offset_memObject_j ) with 0 × 008.

5.2.3 � Discussion

AAIS leads to the reduction of memory stalls only if an
application has an inherent potential for optimization. If
there are no simultaneous requests for accessing the same
region of a CMX slice, there will be no stall cycles in the
BIS-generated schedule and hence no space for AAIS to
optimize the schedule. The optimization potential of an
application can be defined as the number of simultaneous
memory accesses to the same region scheduled in a single
cycle by BIS. Optimization potential can easily be calcu-
lated by inspecting the assembly code of an application
generated by the BC.

To harness the optimization potential of an application,
physical locations of memory objects predicted by affin-
ity numbers and their actual physical locations should be
same. Otherwise, appended tile IDs will provide wrong
information to the scheduler for AAIS leading to the
generation of an unoptimized or unwanted instruction
schedule.

The source code annotation places a burden on the pro-
grammer to attach custom attributes to memory objects.
For large applications, it can be time-consuming and
may also require modifications other than simply attach-
ing custom attributes. However, if data placement can be
enforced on the application data and it is a known priori,
this approach could be more accurate and beneficial in
reducing stall cycles than the automated one.

On the other hand, automated analysis relieves the pro-
grammer from the manual modifications in the applica-
tion source code. However, it appends tile IDs to memory
objects based on their offset from the base address of data
structure they belong to. It also assumes that the first ele-
ment of a data structure is always aligned at the 16-byte
boundary. This may result in appended tile IDs (i.e., pre-
dicted physical locations) not reflecting the actual loca-
tions of memory objects.

6 � Implementation

In this section, we provide the details of modifications
applied on Myriad 2 compiler to implement the proposed
solution. We first explain the implementation of affin-
ity analysis step using both approaches, followed by the
implementation details of AAIS.

6.1 � Source code annotation

Myriad 2 compiler is an extended version of LLVM com-
piler framework that is tailored to generate code for a
SHAVE processor. Like LLVM, Myriad 2 compiler also
uses Clang as a compiler front-end for C/C++ languages.
To implement the annotation-based approach, we modify
the LLVM framework at two levels.

6.1.1 � Adapting the front‑end

The idea of source code annotation is to allow the pro-
grammer appending tile IDs to all memory objects in the
application source code. We enable this by defining a cus-
tom attribute for any type and making Clang aware of its
syntax and semantics. We modify the Clang source code
as described below.

1.	 Add the definition of the custom attribute to Clang.
2.	 Modify the relevant functions in Clang to detect if a

given variable declaration or initialization in the source
code has the custom attribute defined in step 1. The vari-
able can be of any type including the pointer variable.

3.	 If a variable has the custom attribute, then attach the
metadata to the corresponding alloc, load, or store
instructions generated for allocation or initialization of
the variable.

6.1.2 � Adapting the backend

The above-mentioned modifications enable the Clang to
recognize custom attribute and take the appropriate actions
to process it. However, the information needs to be propa-
gated from the front-end to the backend.

In LLVM, selection DAG builder class builds an initial
directed acyclic graph providing an abstraction for code
representation [50]. We modify the relevant functions in
the class to propagate the predicted physical locations
of memory objects down to the post-register allocation
scheduling (PostRAS) pass. This is achieved by detecting
the existence of metadata of the desired kind while visiting
alloc, store, and load instructions. Upon finding metadata,

863Journal of Real-Time Image Processing (2020) 17:853–870	

1 3

tile IDs are appended to memory objects of these instruc-
tions based on the value of their metadata.

6.2 � Automated analysis

Unlike the source code annotation, the automated analysis
does not necessitate the modifications in front-end and the
selection DAG builder class of the backend. We implement
the automated analysis by writing a custom LLVM pass,
named “Address Analysis Pass” (AAP), as shown in Fig. 7.
AAP is invoked after register allocation and the generation
of a basic instruction schedule. It calculates and appends
tile IDs to memory objects by implementing Algorithm 1
and needs to be executed before the SHAVE PostRAS pass.
Once the tile IDs are appended, SHAVE PostRAS pass cre-
ates affinity-aware instruction schedule, as described in the
following subsection.

6.3 � Affinity‑aware instruction scheduling (AAIS)

In LLVM framework, the compiler consists of multiple
passes which perform particular transformations and opti-
mizations. In Myriad 2’s BC, a basic instruction schedule
is generated by preceding passes before AAP, as shown in
Fig. 7. We modify PostRAS pass to update basic instruc-
tion schedule based on tile IDs appended to memory objects
in AAP. The modified PostRAS pass detects the conflicts

among memory instructions by comparing tile IDs of their
memory objects (i.e., testing the second condition defined
in Sect. 5) and saves stall cycles by not scheduling them in
the same clock cycle.

7 � Experimental setup

To evaluate our proposed optimization, we used 11 bench-
marks, as described in Sect. 3. Table 3 provides a brief
description of these benchmarks, while the critical part of
their source code is given in Table 4 of “Appendix”.

Benchmarks P1–P4 and P6 perform image addition or
subtraction on different number and sizes of input images.
Although a very basic operation, image addition, and sub-
traction is used as a step in other algorithms. Example of
such algorithms includes usage of image differencing as
a simple technique for change detection [51] providing a
powerful interpretation of change in the tropical region and
urban environment [52]. Image differencing is also used in
mask mode radiography (for studying the propagation of
contrast medium) and in motion-based segmentation [41].
Similarly, image addition is used in calculating the average
face as a step in face recognition techniques based on eigen-
faces [53]. The integral image technique is another algorithm
which uses the pixel addition and is widely used in fields
of computer vision and computer graphics such as texture
mapping and face detection [54, 55].

Benchmark P5 and P8 perform filtering operation, while
P7 represents convolution. These operations are widely used
for noise reduction, sharpening, edge detection, and blurring
of images [41, 56]. Benchmark P9 represents white balanc-
ing operation which is a required stage of image-processing
pipeline in modern digital cameras [57, 58]. Benchmark P10
consists of histogram generation which is used as an initial
step in image enhancement applications [59, 60]. Benchmark

Fig. 7   Implementation of automated analysis as a custom pass in
LLVM. Address analysis pass (AAP) appends affinity numbers to
memory objects using Algorithm 1. Modified SHAVE PostRAS pass
creates affinity-aware instruction schedule based on affinity numbers

Table 3   Brief description of benchmarks

Prog ID Description Number of
inputs

Total input
size (KB)

Output size (KB)

P1 Calculates the absolute difference of two input images 2 1 1
P2 Performs addition of four input images 4 20 20
P3 Performs addition of two input images 2 1.875 1.875
P4 Same as P3 but performs addition of two input images based on a mask input 3 0.5 0.5
P5 Calculates the output image as the scaled addition of five box filtered input images 5 1.07 1.07
P6 Addition of two scaled images 2 20 20
P7 Image convolution using a 3 × 3 mask 1 3.75 1.25
P8 Sum of absolute difference using a 5 × 5 window 2 9.375 1.875
P9 Application of white balancing operation on a RGB image 1 5.625 5.625
P10 Generation of histogram for the input image 1 7.56 –
P11 Similarity measurement between two images 2 0.625 4.03

864	 Journal of Real-Time Image Processing (2020) 17:853–870

1 3

P11 measures the degree of similarity for a given pixel in
the first image with pixels in the second image at different
disparities. The similarity measurement is an important step
in all stereo-matching algorithms [46, 61].

All benchmarks were executed on a Myriad 2 board with
a single execution thread using both BC and AAC. For each
benchmark, we measured the performance improvement as
the percentage reduction in stall cycles and execution time
when compared to the BC.

8 � Evaluation

As mentioned in Sect. 5.2.3, source code annotation is a
time-consuming process and may need modifications at
many places in the application source code. Therefore,
we evaluate and demonstrate its working only for a single
memory-intensive test program in the following subsection.

8.1 � Source code annotation for a simple
memory‑intensive test program

Listing 1 shows the source code of a simple test program.
The program defines an array of short type of length SIZE.
The main() function calls the copyArray() function
which writes to every second element of the array. For per-
formance evaluation, stalls and instruction execution cycles
are measured for the for loop of copyArray() function.

A portion of assembly code generated by BC for Listing
1 is shown in Fig. 8a. In SHAVE’s assembly, instructions
scheduled in the same cycle are represented by placing ∥
symbol among them. The syntax of a Store instruction is
LSU(0|1).STO.16 x,y,imm, and it moves the data
from the register x to memory. The memory address is

calculated using the content of the register y as the base
address and imm as the displacement.

1 short A[SIZE] ;
2 void
3 a t t r i b u t e ((no i n l i n e)) copyArray (short A){
4 i n i t i a l i z eT im e r s () ;
5 startTimers () ;
6 unsigned int i = 0 ;
7 for (i = 0 ; i < SIZE ; i += 32){
8 A[i] = 0 ;
9 A[i + 2] = 2 ;

10 A[i + 4] = 4 ;
11 A[i + 6] = 6 ;
12 A[i + 8] = 8 ;
13 A[i + 10] = 10 ;
14 A[i + 12] = 12 ;
15 A[i + 14] = 14 ;
16 A[i + 16] = 16 ;
17 A[i + 18] = 18 ;
18 A[i + 20] = 20 ;
19 A[i + 22] = 22 ;
20 A[i + 24] = 24 ;
21 A[i + 26] = 26 ;
22 A[i + 28] = 28 ;
23 A[i + 30] = 30 ;
24 }
25 stopTimers () ;
26 }
27 int main () {
28 copyArray (A) ;
29 return 0 ;
30 }

*

Listing 1 Source code of test program.

In the assembly code of Fig. 8a, i25 is a register contain-
ing the value of base_address + 64 . Numbers on the right of
the assembly code show the clock cycles in which instruc-
tions are scheduled. For ease of discussion, we assume
that base_address is zero. In cycle 1 of the assembly code,
two Store instructions are scheduled simultaneously. One
of them accesses address 60 (= 0 + 64 − 4), located in
Tile 1 and R1 of the CMX slice, as shown in Fig. 8b. The
other paired instruction accesses the location at address 8
(= 0 + 64 − 56), also located in the same tile and the same
region. As a result, the simultaneous scheduling of the two

(a) (b)

Fig. 8   Instruction schedule generated by BC

865Journal of Real-Time Image Processing (2020) 17:853–870	

1 3

instructions incurs a stall cycle, as discussed in Case B2 of
section 5.2. Same is true for cycles 4, 5, and 6.

On the other hand, the two store instructions scheduled in
cycle 2 access addresses in different tiles and hence differ-
ent regions. Specifically, one of them accesses the address
12 (=0+64 − 52), located in the Tile 1 and R1. The other
paired instruction accesses the address 16 (= 0 + 64 − 48),
located in the Tile0 and R0. Therefore, simultaneous sched-
uling does not incur a stall cycle as discussed in Case A of
section 5.2. Same is true for cycles 3, 7, and 8. Note that
the optimization potential for the given piece of assembly
code shown in Fig. 8a (and not for the whole program) is 4
as there are four cycles entertaining simultaneous memory
accesses to the same region. The analysis of all (SIZE =
2500) memory accesses shows that the program of Listing
1 has an optimization potential of 234 cycles.

Listing 2 is functionally same as the Listing 1, but the
source code is modified to append memory objects with
their tile IDs. Line 1 and 2 define two macros, Tile0 and
Tile1, using the custom defined attribute, i.e., movi-
Attr. As shown in lines 13–28, instead of accessing the
array elements through array index, each element is accessed
using a pointer carrying a tile ID of 0 or 1.

1 #define Ti le0 a t t r i b u t e ((moviAttr (0)))
2 #define Ti le1 a t t r i b u t e ((moviAttr (1)))
3 short A[SIZE] ;
4 void a t t r i b u t e ((no i n l i n e)) copyArray (short A){
5 i n i t i a l i z eT ime r s () ;
6 startTimers () ;
7 Ti l e0 short temp1 , temp2 ;
8 Ti l e1 short temp3 , temp4 ;
9 unsigned int i = 0 ;

10 for (i = 0 ; i < SIZE ; i += 32){
11 temp1 = A + i ; temp1 = 0 ;
12 temp2 = A + i + 2 ; temp2 = 2 ;
13 temp3 = A + i + 4 ; temp3 = 4 ;
14 temp4 = A + i + 6 ; temp4 = 6 ;
15 temp1 = A + i + 8 ; temp1 = 8 ;
16 temp2 = A + i + 10 ; temp2 = 10 ;
17 temp3 = A + i + 12 ; temp3 = 12 ;
18 temp4 = A + i + 14 ; temp4 = 14 ;
19 temp1 = A + i + 16 ; temp1 = 16 ;
20 temp2 = A + i + 18 ; temp2 = 18 ;
21 temp3 = A + i + 20 ; temp3 = 20 ;
22 temp4 = A + i + 22 ; temp4 = 22 ;
23 temp1 = A + i + 24 ; temp1 = 24 ;
24 temp2 = A + i + 26 ; temp2 = 26 ;
25 temp3 = A + i + 28 ; temp3 = 28 ;
26 temp4 = A + i + 30 ; temp4 = 30 ;
27 }
28 stopTimers () ;
29 }
30 int main () {
31 copyArray (A) ;
32 return 0 ;
33 }

*
*

*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

Listing 2 Source code of test program with static affin-
ity allocation.

Figure 9a shows a portion of assembly code generated
by AAC for the Listing 2, where register i18 contains the
value of base_address + 256 . For ease of discussion, we
assume that base_address is zero. The layout of array ele-
ments in the CMX slice is shown in Fig. 9b. Assuming that
the first element of the array is located at the address zero,
the 16th element has an address of 32 (= 16 × 2, where 2
is the size of each element) and the 18th element has an
address of 36. Since lines 21 and 22 of Listing 2 append the
same tile ID to 16th and 18th array elements, AAC does not
schedule accesses to them in the same cycle. As shown in
Fig. 9a, address 32 (= 256 − 224) is accessed simultane-
ously with address 12 (= 256 − 244) in cycle 10 and both
addresses are located in different tiles and hence different
regions. This saves a stall cycle for accessing the 16th array

(a) (b)

Fig. 9   Instruction scheduling with static affinity allocation for memory references

866	 Journal of Real-Time Image Processing (2020) 17:853–870

1 3

element (located at address 32) as compared to the schedule
generated by BC, as shown in Fig. 8. In the same way, all
the other stall-generating simultaneous accesses in Fig. 8 are
avoided, resulting in significant reduction of stall cycles for
the annotated version of the program.

Execution of the test program in Listing 1 on Myriad 2
board takes 937 clock cycles (i.e., 765 instruction cycles
plus 172 stalls). On the other hand, the test program of List-
ing 2 takes 697 clock cycles (i.e., 641 instruction cycles plus
56 stalls). The remaining 56 stalls may belong to categories
of bad speculation or core bound stalls. The difference of
240 cycles between the two execution times is very close
to the optimization potential of 234 cycles for the test pro-
gram in Listing 1. The significant improvement by 25.61% in
execution time of the sample test program can be attributed
to its memory-intensive nature.

8.2 � Experimental results for automated affinity
analysis

In this subsection, we evaluate the classification of memory
references using automated affinity analysis approach. We
executed the benchmarks given in Table 3 on a Myriad 2
board using both BC and AAC.

Figure 10 shows the breakdown of the execution time of
benchmarks into instruction and stall cycles. The breakdown

is shown for both, BC and AAC. Benchmarks executed using
AAC show a significant reduction in stall cycles as com-
pared to the BC (e.g., P1, P2, P3, P4, P6, P9, and P10). The
average reduction in stall cycles is by 69.83%.

Some benchmarks, such as P5 and P7, show a relatively
lesser reduction in stall cycles. The difference in reduction
of stall cycles across different benchmarks can be explained
through their optimization potential. Figure 11 shows the
breakdown of total requests for simultaneous memory access
into three different cases. As explained in Sect. 5.2.3, BC
and AAC generate the same schedule in Case A. In Case
B1, AAC can possibly reduce the number of instruction
cycles. However, AAC also reduces stalls in addition to a
possible reduction in the number of instruction cycles in
Case B2. In other words, higher the number of simultaneous
memory requests belonging to Case A lower is the Optimi-
zation Potential of a benchmark. Figure 11 shows that both
benchmarks, P5 and P7, have 20% of simultaneous memory
requests belonging to Case A. Therefore, AAC achieves
relatively lower reduction in stall cycles for P5 and P7 as
compared to other benchmarks.

For most benchmarks (i.e., P1, P3, P4, P5, P6, P7,
P9, and P10), the number of instruction cycles remains
almost same when executed using BC and AAC. However,
AAC execution of P2 increases the number of instruction
cycles by 4.83%. The increase can be attributed to those

Fig. 10   Breakdown of execution time into instruction and stall cycles for executions using BC and AAC​

Fig. 11   Breakdown of simultaneous memory access into three different cases. Case A: Memory objects belong to different tiles. Case B: Mem-
ory object belong to the same tile but different regions. Case B_2: Memory objects belong to the same region of the same tile

867Journal of Real-Time Image Processing (2020) 17:853–870	

1 3

simultaneously scheduled memory instructions in the BC-
generated schedule which cannot be successfully serialized
by AAC through scheduling them in the same cycle with
another suitable instruction. As a result, new cycles need to
be inserted for scheduling of such instructions (as explained
through Schedule 3 of Table 2 in Sect. 5). On the other hand,
AAC execution of P8 and P11 shows 2.34% and 24.57%
reduction in instruction cycles, respectively, as compared
to BC. This reduction can be attributed to those simultane-
ously scheduled memory instructions in the BC-generated
schedule which are successfully serialized by AAC through
scheduling them in the same cycle with another suitable
instruction (as explained through the Schedule 1 of Table 2
in Sect. 5).

Figure 10 shows that stall cycles make up to 8.77% (i.e.,
P11) of execution time and 4% on average for BC execu-
tions. Since our proposed optimization focuses only on the
reduction of memory stalls, the execution time improves up
to 30% (i.e., P11) with an average of 5.79%. However, the
significant average reduction by 69% in stall cycles suggests
that the proposed optimization can substantially improve
execution time for memory-intensive applications, as shown
by a sample program in Sect. 8.1.

9 � Conclusion

In this paper, we propose the classification of memory ref-
erences as a compiler optimization to reduce the memory
bound stalls incurred by an application running on a vision-
processing system (i.e., Myriad 2 MPSoC). Our solution
consists of two steps: affinity analysis and affinity-aware

instruction scheduling. We implemented two different
approaches for affinity analysis, namely, source code anno-
tation and automated analysis.

While source code annotation approach facilitates more
accurate prediction of the physical location of memory
objects, it needs considerable effort by the programmer to
modify the source code. On the other hand, automated analy-
sis relieves a programmer from the burden of modifying the
source code, but employs certain assumptions about data
placement. This may result with less accuracy in attaching
affinity numbers to memory objects.

Experimental results show that by making the compiler
aware of memory architecture and efficiently using the dual
load-store units, memory stalls can be reduced significantly.
Classification of memory references using source code anno-
tation reduces stalls by 67.44% for a memory-intensive pro-
gram, leading to 25.61% improvement in its execution time.
On the other hand, automated analysis approach shows an
average reduction by 69.83% in stall cycles with a modest
improvement by 5.79% in execution time over a set of eleven
different image-processing benchmarks.

Acknowledgements  This work is supported by European Union’s
Horizon2020 research and innovation programme under grant agree-
ment number 687698 and Ph.D. scholarship from Higher Education
Commission (HEC) of Pakistan awarded to Naveed Ul Mustafa.

Appendix: A critical part of source code
for benchmarks

See Table 4

868	 Journal of Real-Time Image Processing (2020) 17:853–870

1 3

Table 4   Source code of benchmarks

Prog
ID

Critical code Prog
ID

Critical code

P1 for (j = 0 ; j < width ; j++){
i f (i n 1 [j] > i n 2 [j])

out [0] [j] = in 1 [j] − i n 2 [j] ;
else

out [0] [j] = in 2 [j] − i n 1 [j] ;
}

P2 for (unsigned int k = 0 ; k < width ; k++){
for (unsigned int disp = 0 ; d i sp <

d i s p a r i t i e s ; d i sp++){
out [k d i s p a r i t i e s + disp] = (path0 [

k d i s p a r i t i e s + disp] + path1 [
k d i s p a r i t i e s + disp] + path2 [
k d i s p a r i t i e s + disp] + path3 [
k d i s p a r i t i e s + disp]) / 4 ;

}
}

P3 for (i = 0 ; i < (int) width ; i++){
add = src1 [0] [i] + src2 [0] [i] ;
i f (add >= 255)

add = 255.0 f ;
i f (add <= 0)

add = 0.0 f ;
dst [0] [i] = (unsigned char) (add) ;

}

P4 for (i = 0 ; i < (int) width ; i++) {
i f (mask [0] [i] > 0){

add = src1 [0] [i] + src2 [0] [i] ;
i f (add >= 255)

add = 255.0 f ;
i f (add <= 0)

add = 0.0 f ;
dst [0] [i] = (u8) (add) ;

}
}

P5 for (i = 0 ; i < width ; i++){
sum = 0 ;
for (y = 0 ; y < 5 ; y++){

for (x = −2; x <= 2; x++){
sum += (l i n e s [y] [x]) ;

}
l i n e s [y]++;

}
(out+i)=(u8) (((ha l f) (f loat)sum) (ha l f

) 0 . 04) ;
}

P6 for (co l = 0 ; co l < width ; c o l++){
for (d i sp = 0 ; d i sp < d i s p a r i t i e s ; d i sp

++){
r e s u l t = (alpha d i spa r i tyCos t [c o l

d i s p a r i t i e s + disp] + beta
adCost [c o l d i s p a r i t i e s + disp])
/ normFactor ;

i f (r e s u l t > 255) r e s u l t = 255;
d i spa r i tyCos t [c o l d i s p a r i t i e s +

disp] = r e s u l t ;
}

}

P7 for (i = 0 ; i < inWidth /3 ; i++){
sum = 0.0 f ;
for (x = 0 ; x < 3 ; x++) {

for (y = 0 ; y < 3 ; y++)
sum += (short f loat) (l i n e s [x] [y −

1] conv [x 3 + y]) ;
l i n e s [x]+=3;

}
out [0] [i] = (short f loat) (sum) ;
}

P8 for (i = 0 ; i < width ; i++){
sum = 0 ;
for (x = 0 ; x < 5 ; x++){

for (y = 0 ; y < 5 ; y++){
d i f f = l i n e s 1 [x] [y − 2] − l i n e s 2 [x

] [y − 2] ;
i f (d i f f < 0)

d i f f = 0 − d i f f ;
sum += d i f f ;

}
l i n e s 1 [x]++;
l i n e s 2 [x]++;

}
i f (sum >= 255)

sum = 255;
out [0] [i] = (unsigned char) (sum) ;

}

P9 for (i = 0 ; i < (int) width ; i++){
r = ((unsigned int) r In [i] (unsigned

int) awbCoef [0]) >> 15 ;
g = ((unsigned int) gIn [i] (unsigned

int) awbCoef [1]) >> 15 ;
b = ((unsigned int) bIn [i] (unsigned

int) awbCoef [2]) >> 15 ;

rOut [i] = (unsigned short) (r > clamp [0]
? clamp [0] : r) ;

gOut [i] = (unsigned short) (g > clamp [0]
? clamp [0] : g) ;

bOut [i] = (unsigned short) (b > clamp [0]
? clamp [0] : b) ;

}

P10 for (i = 0 ; i < width ; i+=4){
int out1 = piHi s t1 ;
int out2 = piHi s t2 ;
int out3 = piHi s t3 ;
int out4 = piHi s t4 ;

p iH i s t1 = out1+1; p iH i s t2 = out2+1;
p iH i s t3 = out3+1; p iH i s t4 = out4+1;

p iH i s t1 = h i s t 1 + index1 ;
p iH i s t2 = h i s t 2 + index2 ;
p iH i s t3 = h i s t 3 + index3 ;
p iH i s t4 = h i s t 4 + index4 ;

index1 = (unsigned int) i n l i n e [i + 8] ;
index2 = (unsigned int) i n l i n e [i + 9] ;
index3 = (unsigned int) i n l i n e [i + 1 0] ;
index4 = (unsigned int) i n l i n e [i + 1 1] ;

}

P11 for (int pos i t i onL = 0 ; pos i t i onL < (
width&0 x f f f f f f f c) ; pos i t i onL++) {
unsigned int in1L = in1 [pos i t i onL] ;
unsigned int input [DISPARITIES] ;

#pragma un ro l l DISPARITIES
for (int i = DISPARITIES−4; i >= 0;

i −=4)
((uint4) &input [i]) = ((uint4

) &in2 [pos i t ionL−i −3])−>
s3210 ;

#pragma un ro l l DISPARITIES
for (unsigned int indexR = 0 ;

indexR < DISPARITIES ; indexR
++) {

unsigned int resultXOR = in1L ˆ
input [indexR] ;

std : : b i t s e t <32> b i t s = resultXOR ;
out [pos i t i onL DISPARITIES +

indexR] = (unsigned char)
b i t s . count () ;

}
}

*
*
*
*
*

* * *

*

*

*

*
*

* *

*

*

*

*
*

*
*
*
*

*
*

*
*

*

*

869Journal of Real-Time Image Processing (2020) 17:853–870	

1 3

References

	 1.	 Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time
computer vision with opencv. Commun. ACM 55(6), 61–69
(2012)

	 2.	 Farabet, C., Martini, B., Corda, B., Akselrod, P., Culurciello, E.,
LeCun, Y.: Neuflow: a runtime reconfigurable dataflow processor
for vision. In: Proceedings of IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 109–116 (2011)

	 3.	 Barry, B., Brick, C., Connor, F., Donohoe, D., Moloney, D., Rich-
mond, R., O’Riordan, M.J., Toma, V.: Always-on vision process-
ing unit for mobile applications. IEEE Micro. 35(2), 56–66 (2015)

	 4.	 Chua, J.L., Chang, Y.C., Lim, W.K.: A simple vision-based fall
detection technique for indoor video surveillance. Signal Image
Video Process. 9(3), 623–633 (2015)

	 5.	 Gómez, M.J., García, F., Martín, D., de la Escalera, A., Armin-
gol, J.M.: Intelligent surveillance of indoor environments based
on computer vision and 3D point cloud fusion. Exp. Syst. Appl.
42(21), 8156–8171 (2015)

	 6.	 Rautaray, S.S., Agrawal, A.: Vision based hand gesture recogni-
tion for human computer interaction: a survey. Artif. Intell. Rev.
43(1), 1–54 (2015)

	 7.	 Suwajanakorn, S., Kemelmacher-Shlizerman, I., Seitz, S.M.: Total
moving face reconstruction. In: Proceedings of European Confer-
ence on Computer Vision, pp. 796–812 (2014)

	 8.	 Smolyanskiy, N., Huitema, C., Liang, L., Anderson, S.E.: Real-
time 3D face tracking based on active appearance model con-
strained by depth data. Image Vis. Comput. 32(11), 860–869
(2014)

	 9.	 Bar. Y., Diamant, I., Wolf, L., Greenspan, H.: Deep learning with
non-medical training used for chest pathology identification. In:
Proceedings of Medical Imaging 2015: Computer-Aided Diagno-
sis (2015)

	10.	 Greenspan, H., van Ginneken, B., Summers, R.M.: Guest editorial
deep learning in medical imaging: overview and future promise
of an exciting new technique. IEEE Trans. Med. Imaging. 35(5),
1153–1159 (2016)

	11.	 Ohn-Bar, E., Tawari, A., Martin, S., Trivedi, M.M.: On surveil-
lance for safety critical events: in-vehicle video networks for pre-
dictive driver assistance systems. Comput. Vis. Image Underst.
134, 130–140 (2015)

	12.	 Mandal, D.K., Sankaran, J., Gupta, A., Castille, K., Gondkar, S.,
Kamath, S., Sundar, P., Phipps, A.: An Embedded Vision Engine
(EVE) for automotive vision processing. In: Proceedings of IEEE
International Symposium on Circuits and Systems (ISCAS), pp.
49–52 (2014)

	13.	 Zhang, B., Huang, W., Li, J., Zhao, C., Fan, S., Wu, J., Liu, C.:
Principles, developments and applications of computer vision for
external quality inspection of fruits and vegetables: a review. Food
Res. Int. 62, 326–343 (2014)

	14.	 Aghbashlo, M., Hosseinpour, S., Ghasemi-Varnamkhasti, M.:
Computer vision technology for real-time food quality assurance
during drying process. Trends Food Sci. Technol. 39(1), 76–84
(2014)

	15.	 Ma, J., Sun, D.W., Qu, J.H., Liu, D., Pu, H., Gao, W.H., Zeng,
X.A.: Applications of computer vision for assessing quality of
agri-food products: a review of recent research advances. Crit.
Rev. Food Sci. Nutr. 56(1), 113–127 (2016)

	16.	 Guo, Y., Zhuge, Q., Hu, J., Yi, J., Qiu, M., Sha, E.H.M.: Data
placement and duplication for embedded multicore systems with
scratch pad memory. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 32(6), 809–817 (2013)

	17.	 Wang, D., Du, X., Yin, L., Lin, C., Ma, H., Ren, W., Wang, H.,
Wang, X., Xie, S., Wang, L., Liu. Z., Wang, T., Pu, Z., Ding, G.,

Zhu, M., Yang, L., Guo, R., Zhang, Z., Lin, X., Hao, J., Yang,
Y., Sun, W., Zhou, F., Xiao, N., Cui, Q., Wangg, X.: MaPU: A
novel mathematical computing architecture. In: Proceedings of
IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 457–468 (2016)

	18.	 Lin, Z., Sankaran, J., Flanagan, T.: Empowering automotive vision
with TI’s Vision AccelerationPac. TI White Paper (2013)

	19.	 Conti, F., Rossi, D., Pullini, A., Loi, I., Benini, L.: PULP: a ultra-
low power parallel accelerator for energy-efficient and flexible
embedded vision. J. Signal Process. Syst. 84(3), 339–354 (2016)

	20.	 Machine Vision Technology: Movidius https​://www.movid​ius.
com/techn​ology​. Accessed 23 Sept 2017

	21.	 Diken, E., O’Riordan, M.J., Jordans, R., Jozwiak, L., Corporaal,
H., Moloney, D.: Mixed-length simd code generation for vliw
architectures with multiple native vector-widths. In: Proceedings
of IEEE 26th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), pp. 181–188
(2015)

	22.	 Chen, T.P., Budnikov, D., Hughes, C.J, Chen, Y.K.: Computer
vision on multi-core processors: articulated body tracking. In:
Proceedings of IEEE International Conference on Multimedia
and Expo, pp. 1862–1865 (2007)

	23.	 Lattner, C., Adve, V.: LLVM: A compilation framework for
lifelong program analysis & transformation. In: Proceedings of
Second Annual IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pp. 75–88 (2004)

	24.	 Sethia, A., Dasika, G., Mudge, T., Mahlke, S.A.: Customized
processor for energy efficient scientific computing. IEEE Trans.
Comput. 61(12), 1711–1723 (2012)

	25.	 Cho, J., Paek, Y., Whalley, D.: Efficient register and memory
assignment for non-orthogonal architectures via graph coloring
and MST algorithms. In: Proceedings of the Joint Conference on
Languages, Compilers and Tools for Embedded Systems: Soft-
ware and Compilers for Embedded Systems (LCTES/SCOPES),
pp. 130–138 (2002)

	26.	 Leupers, R., Kotte, D.: Variable partitioning for dual memory
bank DSPs. In: Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), pp. 1121–
1124 (2001)

	27.	 Ko, M.Y., Bhattacharyya, S.S.: Partitioning for DSP software syn-
thesis. In: Proceedings of International Workshop on Software and
Compilers for Embedded Systems (SCOPES), pp. 344–358 (2003)

	28.	 Murray, A., Franke, B.: Fast source-level data assignment to
dual memory banks. In: Proceedings of the 11th International
Workshop on Software and Compilers for Embedded Systems
(SCOPES), pp. 43–52 (2008)

	29.	 Sipkova, V.: Efficient variable allocation to dual memory banks
of DSPs. In: Proceedings of International Workshop on Software
and Compilers for Embedded Systems (SCOPES), pp. 359–372
(2003)

	30.	 Kim, Y., Lee, J., Shrivastava, A., Paek, Y.: Operation and data
mapping for CGRAs with multi-bank memory. In: Proceedings
of the ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES), pp.
17–26 (2010)

	31.	 Mi, W., Feng, X., Xue, J., Jia. Y.: Software-hardware cooperative
DRAM bank partitioning for chip multiprocessors. In: Proceed-
ings of International Conference on Network and Parallel Comput-
ing (IFIP), pp. 329–343 (2010)

	32.	 Bircsak, J., Craig, P., Crowell, R., Cvetanovic, Z., Harris, J., Nel-
son, C.A, Offner, C.D.: Extending openmp for NUMA machines.
In: Proceedings of ACM/IEEE 2000 Conference on Supercomput-
ing (SC) (2000)

	33.	 Antony, J., Janes, P.P., Rendell, A.P.: Exploring thread and mem-
ory placement on numa architectures: Solaris and linux, ultras-
parc/fireplane and opteron/hypertransport. In: Proceedings of

https://www.movidius.com/technology
https://www.movidius.com/technology

870	 Journal of Real-Time Image Processing (2020) 17:853–870

1 3

International Conference on High-Performance Computing, pp.
338–352 (2006)

	34.	 Lameter, C.: Numa (non-uniform memory access): an overview.
ACM Queue. 11(7), 1–12 (2013)

	35.	 Ribeiro, C.P., Mehaut, J.F., Carissimi, A., Castro, M., Fernandes,
L.G.: Memory affinity for hierarchical shared memory multi-
processors. In: Proceedings of 21st International Symposium on
Computer Architecture and High Performance Computing, pp.
59–66 (2009)

	36.	 Kleen, A.: A numa api for linux. SUSE Labs (2004). http://halob​
ates.de/numaa​pi3.pdf. Accessed 23 Sept 2017

	37.	 Löf, H.,Holmgren, S.: Affinity-on-next-touch: increasing the per-
formance of an industrial pde solver on a cc-numa system. In:
Proceedings of 19th Annual International Conference on Super-
computing (SC), pp. 387–392 (2005)

	38.	 Lankes, S., Bierbaum, B., Bemmerl, T.: Affinity-on-next-touch:
an extension to the linux kernel for numa architectures. In: Pro-
ceedings of International Conference on Parallel Processing and
Applied Mathematics, pp. 576–585 (2010)

	39.	 Golgin, B., Furmento, N.: Enabling high-performance memory
migration for multithreaded applications on LINUX. In: Proceed-
ings of IEEE International Symposium on Parallel & Distributed
Processing (IPDPS) (2009)

	40.	 Codrescu, L., Anderson, W., Venkumanhanti, S., Zeng, M.,
Plondke, E., Koob, C., Ingle, A., Tabony, C., Maule, R.: Hexa-
gon DSP: an architecture optimized for mobile multimedia and
communications. IEEE Micro. 34(2), 34–43 (2014)

	41.	 Gonzalez, R.C.: Digital Image Processing. Prentice-Hall, Upper
Sadle River (2002)

	42.	 McDonnell, M.J.: Box-filtering techniques. Comput. Graph. Image
Process. 17(1), 65–70 (1981)

	43.	 Podlozhnyuk, V.: Image convolution with cuda. NVIDIA Corpora-
tion white paper, vol 2097(3), (2007)

	44.	 Niitsuma, H., Maruyama, T.: Sum of absolute difference imple-
mentations for image processing on fpgas. In: Proceedings of
International Conference on Field Programmable Logic and
Applications (FPL), pp. 167–170 (2010)

	45.	 Bianco, S., Gasparini, F., Schettini, R.: Combining strategies for
white balance. In: Proceedings of SPIE 6502, Digital Photography
III, pp. 65020D (2007)

	46.	 Hirschmuller, H., Scharstein, D.: Evaluation of cost functions for
stereo matching. In: Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)

	47.	 Reinders, J.: VTune Performance Analyzer Essentials. Intel Press,
Santa Clara (2005)

	48.	 Moloney, D., Barry, B., Richmond, R., Connor, F., Brick, C.,
Donohoe, D.: Myriad 2: Eye of the computational vision storm.
In: Proceedings of Hot Chips 26 Symposium (HCS), pp. 1–18
(2014)

	49.	 Thorarensen, S.: A back-end for the skepu skeleton programming
library targeting the low-power multicore vision processor myriad
2. Master’s thesis, Linköping university, Sweden (2016)

	50.	 LLVM 6 documentation https​://llvm.org/docs/CodeG​enera​tor.
html#intro​ducti​on-to-selec​tiond​ags. Accessed 23 Sept 2017

	51.	 Hussain, M., Chen, D., Cheng, A., Wei, H., Stanley, D.: Change
detection from remotely sensed images: from pixel-based to
object-based approaches. ISPRS J. Photogramm. Remote Sens.
80, 91–106 (2013)

	52.	 S, M., Shetty, A.: A comparative study of image change detec-
tion algorithms in MATLAB. In: Proceedings of International
Conference on Water Resources, Coastal and Ocean Engineering
(ICWRCOE) pp. 1366–1373 (2015)

	53.	 Turk, M., Pentland, A.: Eigenfaces for recognition. J Cogn Neu-
rosci. 3(1), 71–86 (1991)

	54.	 Crow, F.C.: Summed-area tables for texture mapping. In: Proceed-
ings of 11th International Conference on Computer Graphics and
Interactive Techniques pp. 207–212 (1984)

	55.	 Jiang, L., Xie, H., Pan, B.: Speeding up digital image correlation
computation using the integral image technique. Opt. Lasers Eng.
65, 117–122 (2015)

	56.	 He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans.
Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)

	57.	 Ramanath, R., Snyder, W.E., Yoo, Y., Drew, M.S.: Color image
processing pipeline. IEEE Signal Process. Mag. 22(1), 34–43
(2005)

	58.	 Lukac, R.: New framework for automatic white balancing of digi-
tal camera images. Signal Process. 88(3), 582–593 (2008)

	59.	 Arici, T., Dikbas, S., Altunbasak, Y.: A histogram modification
framework and its application for image contrast enhancement.
IEEE Trans. Image Process. 18(9), 1921–1935 (2009)

	60.	 Duan, J., Qiu, G.: Novel histogram processing for colour image
enhancement. In: Proceedings of Third International Conference
on Image and Graphics (ICIG) pp. 55–58 (2004)

	61.	 Hong, W.: A study of fast, robust stereo-matching algorithms.
Doctoral dissertation, Massachusetts Institute of Technology,
USA, (2010)

Naveed Ul Mustafa  is a Ph.D. student at department of Computer
Engineering, Bilkent University, Ankara, Turkey. He received his M.S.
degree from Royal Institute of Technology (KTH), Stockholm, in 2011.
His research interests include compiler optimizations, software fault
tolerance, network on chip (NoC) and real time operating systems. He
can be reached at naveed.mustafa@bilkent.edu.tr.

Martin J. O’Riordan  is the chief compiler architect at Movidius, where
he leads the SHAVE processor compiler development based on LLVM
infrastructure and also worked on the SHAVE instruction set architec-
ture and Myriad microarchitecture. O’Riordan has a BSc in computer
science from Trinity College Dublin. He can be reached at martin.
oriordan@ movidius.com.

Stephen Rogers  is a member of the SHAVE processor compiler devel-
opment team at Movidius. Contact him at stephen.rogers@movidius.
com.

Ozcan Ozturk  is an Associate Professor in the Department of Computer
Engineering at Bilkent University. His research interests are in the areas
of accelerators, manycore architectures, parallel computing, and com-
puter architecture. Prior to joining Bilkent, he worked in Cellular and
Handheld Group at Intel and Marvell. He also held positions in NEC
Labs and Arizona State University. His research has been recognized by
Fulbright, Turk Telekom, IBM, Intel, HiPEAC, Tubitak, and European
Commission. Contact him at ozturk@cs.bilkent.edu.tr.

http://halobates.de/numaapi3.pdf
http://halobates.de/numaapi3.pdf
https://llvm.org/docs/CodeGenerator.html#introduction-to-selectiondags
https://llvm.org/docs/CodeGenerator.html#introduction-to-selectiondags

	Exploiting architectural features of a computer vision platform towards reducing memory stalls
	Abstract
	1 Introduction
	2 Related work
	3 Motivation
	4 Myriad 2 architecture
	4.1 CMX memory

	5 Problem and proposed solution
	5.1 Problem formulation
	5.2 Proposed solution
	5.2.1 Source code annotation
	5.2.2 Automated analysis
	5.2.3 Discussion

	6 Implementation
	6.1 Source code annotation
	6.1.1 Adapting the front-end
	6.1.2 Adapting the backend

	6.2 Automated analysis
	6.3 Affinity-aware instruction scheduling (AAIS)

	7 Experimental setup
	8 Evaluation
	8.1 Source code annotation for a simple memory-intensive test program
	8.2 Experimental results for automated affinity analysis

	9 Conclusion
	Acknowledgements
	References

