
LOaPP: Improving the performance of Persistent
Memory Objects via Low-Overhead at-rest PMO

Protection
Derrick Greenspan, Naveed Ul Mustafa, Andres Delgado,

Connor Bramham, Christopher Prats, Samu Wallace, Mark Heinrich, Yan Solihin
{derrick.greenspan, unknown.naveedulmustafa, andres.delgado,

co317248, Christopher.Prats, sa214201, heinrich, yan.solihin}@ucf.edu

Abstract—Persistent Memory (PM) is nearly as fast as tra-
ditional volatile memory while being denser and having the
capability to retain data indefinitely. However, the long-lasting
nature of PM means that, without encryption, it is vulnerable to
data disclosure attacks. Recent research has introduced Persistent
Memory Objects (PMOs) as an abstraction for PM that is both
crash consistent and has the capacity to be secure against cor-
ruption and data disclosure attacks for PMOs at-rest. Previously
presented PMO designs to protect against corruption and data
disclosure attacks use whole PMO encryption/decryption with
integrity verification (WEDI). While this design works, it is slow
and inefficient.

We address this problem with WEDI for the first time. First,
we observe that a PMO can be broken into pages and that we can
adopt demand paging for PMO encryption (per-page encryption).
Second, we explore the design space of per-page PMO encryption
and integrity verification, which we refer to as Low Overhead
at-rest PMO Protection (LOaPP), and we discuss the trade-offs
of each design. Third, we introduce a crash handler to ensure
that PMOs are always secure, even in the face of crashes. Our
new design, with per-page encryption alone, outperforms whole-
PMO encryption without integrity verification (WED) by 1.4×
and 2.6× for two sets of evaluated workloads. Adding per-page
integrity verification on top of per-page encryption outperforms
the original WEDI design by 2.19× and 2.62×.

I. INTRODUCTION

Persistent Memory (PM) offers byte-addressability, high
data densities, and low latency access [35]. These features
make PM a preferred choice to hold persistent data compared
to a storage device. While the first commercial PM (Intel
Optane) was recently discontinued, other products are entering
the space, including CXL Persistent Memory [8], [2] and a
battery-backed SoftPM approach [31].

To manage PM-resident data, prior work has proposed two
main approaches: either host a file system or memory mapped
files within PM [17], [29], or consider PM as a repository of
Persistent Memory Objects (PMOs) [30], [32], [1].

A PMO holds persistent data in pointer-rich data structures
without the backing of a file, while the operating system kernel
manages the namespace, permissions, and sharing semantics
of PMOs. A PMO is mapped/unmapped to/from the address
space of a user process by invoking attach()/detach()
system calls [13]. Once attached, PMO data is accessed
directly as if it were traditional volatile memory. PMO systems

provide the psync() system call as a primitive to persist data
and to manage crash consistency: any modifications to a PMO
are not made durable until psync(), and a crash will result
in the PMO being restored to the last durable state of the
most recent psync(). PMOs support key-based protection
where a successful attach requires that a user-supplied key
must match the system-stored key. Once attached, the granted
access permissions are enforced by the kernel throughout the
attach session. Like a file, a PMO can outlive the process that
created it and survive system boots; like traditional pointer-rich
data, a PMO can store buffers, pointers, and other assorted data
structures.

A PMO can be shared among multiple reader processes
simultaneously, but a writer process must have exclusive PMO
access. Once created, a PMO is either in-use i.e., attached to
a user process or at-rest i.e., not attached to any user process.
Like files, PMOs are likely to spend most of their lifetime at-
rest, holding the persistent data of user processes. This makes
PMOs susceptible to data remanence attacks, where unless
deleted, PMO data remains in plaintext in PM for a long time.
Another vulnerability is when the adversary compromises the
OS kernel to steal or corrupt a PMO’s data. This results in the
adversary stealing or corrupting a PMO’s data without being
noticed by the user processes accessing those PMOs. There-
fore, protecting at-rest PMOs is as important as protecting
in-use PMOs.

To protect at-rest PMOs, prior work [13] proposed
Whole-PMO Encryption, Decryption and Integrity verification
(WEDI). Encryption protects the PMO data from unauthorized
reads, while integrity verification protects the PMO data from
unauthorized writes while at rest. The approach assumes
a trusted kernel implementing the cryptographic primitives
for the system calls. For WEDI, on detach(), the kernel
encrypts the whole PMO, computes and stores its checksum.
On attach(), the whole PMO is decrypted and its checksum
is computed and validated against the stored checksum; any
modifications to the PMO while at rest will be detected,
causing the attach to fail. Since a crash may restore the PMO
state to the one from the last psync(), the PMO state
after each psync() must be recoverable, hence the kernel
must also compute and update the PMO checksum at each
psync().

2

A key problem with WEDI is that the latency of
attach()/detach()/psync() system calls scales pro-
portionally to the size of a PMO [13], and the latency is
difficult to hide. An attach() call is on the critical path
of the requesting process as a user process cannot access the
PMO until it is mapped to its address space. The latency of
psync() is also in the critical path because a consistent
state must be achieved prior to continuing computation past
a psync(). While the latency of detach() may be off
the critical path, a subsequent attach() must be delayed
until detach() completes, hence potentially exposing it.
These mostly exposed and non-scalable latencies present an
impediment to achieving better security even for in-use PMOs,
since a prior work proposed frequent attaches and detaches to
improve security [30]. They result in a higher total execution
time of a user application with WEDI as compared to No
Encryption, Decryption and Integrity verification (NEDI).

64x64 128x128 256x256 512x512 1024x1024 2048x2048 4096x4096

Matrix Size

1
2
3
4
5
6
7

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Fig. 1: Execution time of the Tiled Matrix Multiplication
benchmark with WEDI, with a matrix size from 64 × 64 to
4096 × 4096 elements, normalized to that of NEDI.

To illustrate the extent of the problem, Figure 1 shows the
execution time of a PMO-ported Tiled Matrix Multiplication
(TMM) benchmark [9] with WEDI, normalized to those of
NEDI for each corresponding size. The x-axis shows the
effective size of the PMO holding the input matrix for the
workload. The matrix size within the PMO increases from
64 × 64 items to 4096 × 4096 items (i.e., the PMO increases
from 64 × 64 = 4096 bytes to 4096 × 4096 = 16MB).
Each iteration of the performance critical loop attaches the
PMO, updates an array element, psyncs the PMO and finally
detaches it. The figure shows that the overhead of WEDI
rapidly increases along the PMO size; from 1.5× at 4096 bytes
to 6.4× at 16MB.

The source of WEDI’s non-scalable performance is that
it enforces protections (encryption, decryption, and integrity
mechanisms) at the granularity of a whole PMO size irrespec-
tive of the actual working set size of a single attach session.

Thus, in this paper, we propose a new approach that we
refer to as Low-Overhead at-rest PMO Protection (LOaPP)
(“Low-App”) scheme without lowering the security level.
The key idea is to reduce the PMO overheads by protecting
PMO data at a finer granularity (i.e. pages) and paying the
protection costs only when data are actually accessed. While
conceptually simple, we have to deal with several challenges.
Note that PMOs use a shadowing approach, where each
primary page is backed by a shadow page [13], to guarantee
crash-consistent atomic updates. An important question is
what to decrypt/verify/encrypt for low-overhead? i.e, shadow

pages, or both shadow and primary pages? Second, when to
decrypt/verify/encrypt a PMO during an attach session? Third,
how to ensure that LOaPP maintains checksum integrity of
PMOs? We conduct an extensive design-space exploration to
address these challenges.

This paper makes the following contributions:
1) We propose a novel, Low-Overhead at-rest PMO Pro-

tection (LOaPP) scheme.
2) We present an exploration of LOaPP’s design space

with several performance optimizations to reduce the
protection overhead.

3) We implement LOaPP on a Linux kernel, with a real sys-
tem equipped with Intel Optane PMem. We extensively
evaluate LOaPP on several workloads and find that our
most performant design is 2.19× faster than WEDI. For
FileBench, our most performant design is 2.62× faster
than WEDI.

The rest of this paper is organized as follows: Section II
discusses background knowledge and Section III discusses
related work. Section IV describes our threat model, while
the design of LOaPP and our performance optimizations are
presented in Section V, while its implementation is detailed in
VI. Evaluation methodology and results are presented in Sec-
tion VII and VIII, respectively. Finally, Section IX concludes
and discusses future work.

II. BACKGROUND

This section discusses the necessary concepts and related
work required to more fully understand per-page encryption
with PMOs, including an overview of PM and the PMO
subsystem design that we are using.

A. Persistent Memory

Persistent Memory (PM) is a class of memory technologies
that retains data after power loss, is byte addressable, has
access latency closer to volatile memory than storage devices,
and is more dense than volatile memory. Given its character-
istics, PM becomes attractive for hosting small and medium
sized persistent data, while large data is likely to still rely
on block-based storage. To manage persistent data residing on
PM, one approach is to use a filesystem. Designs based on this
approach store persistent data in files and then map them to the
address space of a user process [5], [17], [29]. However, this
approach must keep both memory metadata and file metadata
consistent and reconcile their semantics. Furthermore, the
approach creates large (≈ 13×) overheads compared to raw
persistent memory device write bandwidth [17].

B. Persistent Memory Objects

An alternative approach of managing PM is to view it
as a collection of Persistent Memory Objects (PMOs) [1],
[19], [30], [32]. A PMO holds persistent data stored in
potentially pointer-rich data structures while the kernel man-
ages the namespace, permissions, and sharing semantics of
PMOs. Though our design of LOaPP is applicable to any
PMO system, we implement LOaPP on the Greenspan PMO

3

(GPMO) system[13]) The GPMO system is the only available
PMO system that can work with a real operating system on
real hardware. PMO system calls for the GPMO system are
shown in Table I. A user process creates a PMO of a given
name, size and key by invoking the pcreate() system call,
while pdestroy() deletes a PMO and reclaims its space.
Once created, a PMO is mapped into the address space of a
user process by invoking attach(), making it accessible to
the process. Conversely, invoking detach() unmaps a PMO
from the address space of a process, making it inaccessible.
Any PMO updates, performed after attaching it, are persisted
in a crash-consistent way by invoking the psync() system
call. When psync() is invoked, the kernel uses shadowing
to achieve crash-consistent persistency of PMO updates.

TABLE I: PMO system calls.

Primitive Description
pcreate(name,size,key) Create a PMO name of size and key.

pdestroy(name,key) Given a key, delete PMO name,
and reclaim its space.

attach(name,perm,key) Render accessible the PMO name, given a
valid key with permissions perm.

detach(addr) Render inaccessible the PMO addr points to.
psync(addr) Persist updates to the PMO addr points to.

C. Crash-Consistency

Crash-consistency is an important requirement for managing
persistent data on PM regardless of whether data is stored
in memory-mapped files or persistent memory objects. An
application, system, or power failure may cause partial or
unordered writes to persistent data; in the absence of crash
consistency, this can lead to the data being in some inconsistent
state from which it cannot be restored. Logging and shadowing
are two popular approaches for achieving crash-consistency.
The GPMO system uses the latter whereby it maintains a
primary and shadow copy of each PMO. The system provides
a fundamental guarantee that, even in the case of a crash, either
the primary or the shadow PMO remains consistent (i.e, free
of partial and unordered writes). Based on the PMO’s state at
the time of a crash, one of the two copies are used to restore
the PMO to a consistent state afterwards.

III. RELATED WORK

A. Hardware support for memory encryption

There is hardware support for memory encryption;
some examples include AMD’s Secure Memory Encryption
(SME) [18] and Intel’s Total Memory Encryption - Multi
Key (TME-MK) [15]. Additional related work include Secure
Enclaves such as Intel’s Software Guard Extensions (SGX) [7]
and AMD’s Secure Encrypted Virtualization (SEV). While
theoretically, these solutions could be used to accelerate PMO
performance and improve security, this paper does not use
them for several reasons.

First, AMD’s SME is lacking because it uses a single
securely generated key and encrypts the entire virtual address
space. Under this scheme, the whole PM may be encrypted,
but isolating one PMO from another through whole-memory
encryption keys is impossible.

Second, although Intel’s TME-MK design seems more
promising, since different parts of memory can be encrypted
with different keys, it suffers from a limited number of
supported domains. For example, according to Intel’s own
specifications [15], a system supporting TME-MK has an
absolute theoretical limit of 31, 999 domains that may be
supported; but since it is anticipated that PMOs will be small,
this limit is likely to be easily met and exceeded (for example,
if each PMO is 4096 bytes large, the limit is exhausted after
128 GB). Furthermore, this limit is described by Intel as the
maximum possible value supported by the CPU model specific
register (MSR) for TME-MK; currently available systems
support several orders of magnitude fewer domains [34].
Finally, TME-MK is only available on 3rd Generation Scalable
Xeons or newer, and it is exclusive to Intel, whereas we are
aiming for a design that is platform agnostic. For all of these
reasons, we do not use TME-MK.

Finally, while secure enclaves provide the ability to com-
pletely isolate processes from one another, AMD’s SEV and
Intel’s SGX solutions are lacking. First, they are vulnerable to
Spectre and Meltdown-style attacks [4], [23], second, Intel’s
current implementation is limited to only 93MB, and third,
Intel’s support for it has been deprecated on modern proces-
sors [14], while AMD’s SEV is designed per virtual machine
rather than per process [18].

B. PMO Security

Prior work with PMOs has largely focused on protection
of PMOs in-use (i.e., while they are attached). For example,
[34], [30], [33] all focus on protecting in-use PMOs from
attacks. MERR [30] proposes attaching a PMO only when
needed and otherwise keeping a PMO in a detached state,
while Xu et al. [34] proposes extending the MERR approach
to use Intel Memory Protection keys (MPK) to limit access of
PMOs only to those threads that require access (i.e., isolating
PMOs between threads). TERP [32] expands on MERR by
providing a compiler pass to perform automatic attaches and
detaches.

Mustafa et al. [22] demonstrated that the use of PMOs
break inter-process isolation, at least so long as a PMO is
shared between multiple processes; Mustafa and Solihin [21]
expanded on this to show that inter-process isolation can be
broken even without sharing a PMO over time, so long as the
processes are linked in some way.

IV. THREAT MODEL

For our threat model, our goal is to protect at-rest PMO data
to provide confidentiality and integrity. Note that our threat
model is different from [30], [22], [21], as they require a
PMO to be in-use to be exploited for a security attack. To
fully protect a PMO, our protection for at-rest PMO data can
be paired with other protection schemes for protecting in-use
PMO data.

The attacker’s goal is to either reveal or tamper with the
confidential data belonging to a user-process stored within an
at-rest PMO. We assume that the attacker knows or has the
capability to find the location of the target PMO in memory.

4

Like files, PMOs are likely to spend most of their lifetime at-
rest, holding the persistent data of user processes. One attack a
PMO is susceptible to is data remanence, where unless deleted,
PMO data remains in plaintext in PM for a long time. A stolen
or improperly disposed of PM may be obtained by the attacker
to obtain sensitive data. Such attacks have been documented in
data stored in files in hard drives [25]. Since then, filesystem
encryption has become widely used to protect at-rest data in
files (but no similar mechanism exists to protect at-rest data
in PM).

Another attack we consider is an attack where the adversary
compromises the OS kernel to steal or corrupt a PMO’s data.
We assume that the data structures residing in the PMO contain
buffers and pointers, which may be targeted for overwrites by
the compromised OS. This results in the adversary stealing or
corrupting a PMO’s data without being noticed by the user
processes accessing those PMOs.

Our trust is limited to specific components of the system
software, notably the Linux Kernel Crypto API [6], crucial
kernel memory functions like memcpy and memset, and our
PMO kernel subsystem. We assume that these components are
devoid of any code vulnerabilities, a plausible belief since their
code sizes are small enough to undergo formal verification,
which has been done on similarly sized programs [20]. To
illustrate, the Linux Kernel Crypto API for version 5.14.18 en-
compasses approximately 82500 source lines of code (SLOC),
while our LOaPP PMO system contains about 2700 source
lines of code, and the kernel memory functions comprises
roughly 100 lines of architecture-specific inline assembly. This
contrasts with the entirety of the kernel, which contains about
2.2 million lines. Consequently, our kernel subsystem, the
critical memory functions (specific to architecture and written
in assembly), and the Crypto API collectively contribute to
a mere 0.4% of the overall kernel. Furthermore, we trust the
encryption hardware of the CPU.

A. Example Attack

PMO Hashtable

TOP
SECRET

Physical Address: 0x120000

(a) Discover PMO address.

Physical Memory
Volatile Memory
(System RAM)

Intel Optane PMEM
(Persistent Memory)

 TOP
SECRET

TOP
SECRET

Kernel Address Space

(b) Map the PMO into kernel
space.

Kernel Address Space

TOP
SECRET

Kernel Print Buffer

Top secret data

(c) Read mapped PMO.

Physical Memory
Volatile Memory
(System RAM)

Intel Optane PMEM
(Persistent Memory)

Kernel Address Space

TOP
SECRET

TOP
SECRET

(d) Unmap PMO.

Fig. 2: Steps of PMO example attack, from [13].

Figure 2, reproduced from [13], demonstrates a data-
disclosure attack on an at-rest PMO. We assume the attacker
has already exploited a kernel code vulnerability to manip-
ulate its control flow. In step a), the attacker locates the

physical address of the targeted PMO by navigating through
the GPMO metadata hashtable. In step b), attacker maps the
target PMO into the kernel virtual address space (e.g., through
vmalloc/ioremap in Linux). In step c), the attacker copies
the PMO’s contents into the kernel print buffer, thereby expos-
ing confidential information. Finally, in step d), the attacker
clears the print buffer and unmaps the PMO from the kernel
address space, effectively erasing any trace of the attack. Note
that an attacker can also perform a data-injection attack by
writing into the mapped PMO in step c) and persisting the
updates (e.g., by flushing the updated pages).

V. LOW OVERHEAD AT-REST PMO PROTECTION DESIGN

From the perspective of our threat model, we consider two
scenarios: 1) when at-rest PMOs need to be protected only
against unwarranted reads and 2) when protection against
both unwarranted reads and writes is required. When a design
D protects against unwarranted writes through Integrity (I)
verification with a checksum updated at a system call c, we
denote it as D/Ic. Otherwise, we denote the design only as D.

Our design space exploration is guided by finding answers
to the two design challenges for at-rest PMO protection. C1:
what should be decrypted, encrypted, or verified? C2: when
to decrypt (D) a data item, verify (V), and update (U) its
checksum, and encrypt (E) it during a PMO's attach session?
C3: How to ensure the checksums are in a consistent state in
the case of an application or system crash? This design space
is shown in Table II.

The Whole PMO Encryption, Decryption, and Integrity
verification (WEDI) design of [13] provides at-rest PMO
protection at the granularity of an entire PMO (C1). Since
the approach provides integrity verification and updates the
checksum of an attached PMO on a psync() system call, we
refer it as WED/Ip for the rest of the paper and is summarized
by the first row of Table II. WED/Ip decrypts the entire
PMO on an attach() request (C2.D). Recall that a PMO
has both a primary copy and a shadow copy. Therefore, to
achieve crash-consistent atomic PMO updates, the decryption
is performed in two steps: first, the primary copy is decrypted
and persisted into the shadow copy. Then, the shadow copy is
copied back and persisted to the primary copy. The two-step
process ensures that if a crash happens during the decryption
step, at least one valid copy is available to recover the PMO to
a consistent state. After decrypting, the checksum is computed
on the decrypted PMO and verified against the stored one
(C2.V). In the case of a successful verification, the PMO
is mapped into the requesting process' address space. On
psync(), after persisting all updates in the shadow copy, the
PMO's stored checksum is updated (C2.U). On detach(),
the shadow copy is first encrypted and persisted into the
primary copy, and then the shadow copy is memset to zero and
persisted (C2.E). Since the design always encrypts/decrypts a
PMO in two steps, it offers an innate guarantee that the stored
checksum will always match the data within the PMO (C3).
More specifically, since the checksum is updated whenever
psync() is, the checksum and the data within the primary
copy will always match.

5

The rest of this section discusses the design of LOaPP
starting from the base design to incrementally optimized
versions.

TABLE II: LOaPP's design-space exploration.

C2Design C1 D V U E C3

WED/Ip PMO attach -/attach -/psync detach innate

BP/Ip
Both
Pages PF -/PF -/psync detach innate

BP/Id
Both
Pages PF -/PF -/detach detach CrH

SP/Ip
Shadow

Page PF -/PF -/psync psync innate

SP/Id
Shadow

Page PF -/PF -/detach psync CrH

A. Encrypting/Decrypting Both PMO Pages (BP)

WED/Ip decrypts, verifies and encrypts all pages of a
PMO, including those that are never accessed by the attaching
process. This contributes to increasing the latency of all three
system calls: attach() decrypts all the pages and then
verifies the checksum at the level of the PMO, psync()
updates this checksum, and detach() encrypts all the pages.
To avoid paying the extra cost, our Low Overhead at-rest PMO
Protection (LOaPP) design reduces the protection granularity
to the page-size and decrypts PMO pages only on-demand.
On an attach(), if the requested PMO is not already
attached to another process and the user-supplied key matches
the system-stored key, the call returns control immediately to
the requesting process. However, the PMO is not mapped
into the process' address space until a Page Fault (PF)
happens. On a PF, the fault handler routine decrypts both the
requested primary page and its shadow copy in a two-step
crash consistent way (same as described for WED/Ip) i.e., C1
and C2.D. Since this design decrypts both pages, we refer it as
BP. On detach(), the dirty pages that were already persisted
in the shadow copy of the PMO by the last psync() are
then encrypted and persisted into the corresponding primary
copy (C2.E). The shadow copy is then destroyed, by calling
memset() on the shadow pages, setting their values to 0,
and then persisting. Since BP, like WEDI/p, always perform
decryption/encryption of PMO pages in two steps, it always
maintains a valid copy of each PMO page, a PMO page that
is free of any partial updates. Therefore, the design provides
innate guarantees of crash-consistency (C3). Note that BP
alone does not provide integrity protection against unwarranted
writes.

BP offers several performance benefits: 1) By adapting
on-demand paging, it does not decrypt/encrypt a PMO page
until the Page Fault (PF) happens. This not only significantly
reduces the attach()/detach() latency but also avoids unnec-
essarily delaying any non-PMO computation following an
attach(). 2) By lowering protection granularity to the sizes
of pages, unlike WED/Ip, BP decrypts/encrypts only those
pages that are actually accessed in an attach session and avoids
paying the extra protection cost for unaccessed pages.

a) BP with Integrity verification, checksum updated on
psync() (BP/Ip): To protect against unauthorized writes in
addition to unauthorized reads, we add integrity verification
to the BP design. However, unlike the PMO-level checksum
of WED/Ip, the new design maintains a per-page checksum.
The design allows a decrypted page to be accessed by the
requesting process only when the page fault handler verifies
that the faulted (and decrypted) page's computed checksum
matches with its stored checksum (C2.V). The checksum of
only dirty PMO pages are updated on a psync() (C2.U),
hence the design is referred as BP/Ip. Since per-page check-
sums are updated by means of a crash-consistent psync(),
the design maintains the innate guarantee that the checksum
and the data within the primary copy will always match (C3).

Note that maintaining per-page checksums increases the size
of metadata per PMO (See SubSection V-D). However, the cost
of maintaining extra metadata is outweighed by the signifi-
cantly lower latency of psync(), compared to WED/Ip, as it
only updates the checksums of dirty pages instead of updating
a single PMO-level checksum. The optimization is likely
to result in significantly lowering the protection overhead
for applications frequently invoking psync() in an attach
session.

b) BP with Integrity verification, checksum updated on
detach (BP/Id): While BP/Ip significantly lowers the latency
of psync() as compared to WED/Ip, it is still high compared
to BP (which provides no integrity protection), especially
when psync() is invoked more frequently in an attach
session, as shown in Figure 7 of Section VIII. We ask the
following question: Can we design a protection scheme that
still provides integrity verification, ensures crash-consistency
but further lowers the latency of psync()? One option
is to update the checksum of dirty pages on detach()
(C2.U) while the dirty pages themselves are still persisted by
psync(). This design is referred as BP/Id. While BP/Id re-
duces the psync() latency, it creates a checksum-consistency
problem: If a crash happens between a psync() and the
detach(), on reboot, there is a mismatch between between
a page's data (persisted at psync) and its checksum (updated
at detach()). To address the issue, we equip the BP/Id with
a Crash Handler (CrH) routine that restores the checksum-
consistency guarantee for BP/Id design (C3). The crash handler
is discussed in Subsection V-F.

B. Encrypting/Decrypting only Shadow PMO Page (SP)
Unlike WED/Ip that decrypts/encrypts the whole PMO on

attach()/detach(), BP/Ip and BP/d aim at reducing
the attach()/detach() latency by decrypting/encrypting
PMO pages only on-demand. BP/Ip and BP/d have both the
primary and shadow copies in decrypted form after a PMO
Page Fault (PF). To reduce the latency of the two system calls
even further, we propose a design that decrypts the primary
page on PF into the shadow page (C2.D) and persists it in the
shadow page but does not copy back and persist the shadow
page to the primary page. In other words, only the Shadow
Page is modified (C1), hence the design is referred to as SP.
Like BP, SP also verifies the checksum of a page on PF (C2.V)
and updates it on psync() (C2.U).

6

The SP design involves a trade-off: Since a shadow page
is in decrypted form while its corresponding primary page
is in encrypted form, a psync() operation after persisting
a shadow page must encrypt and persist the shadow page
into the primary page (C2.E). The additional operation of
encryption increases psync() latency. Since updates are
always guaranteed to be encrypted and persisted in the primary
page by psync(), SP can simply zero the shadow pages on
detach() and free them. As the updates are persisted by
already crash-consistent psync(), SP maintains the innate
guarantee of crash-recovery (C3). Note that the SP design is
likely to reduce the protection overhead when an application
attaches/detaches a PMO more often than psyncing a PMO
(e.g., frequent read-only PMO attach-sessions).

a) SP with Integrity verification, checksum updated on
psync (SP/Ip: Just as BP/Ip adds integrity protection to BP,
SP/Ip adds integrity protection to SP with a page's checksum
updated on psync() (C2.U). The SP/Ip design maintains an
innate guarantee that the checksum will always match (C3).

b) SP with Integrity verification, checksum updated on
detach() (SP/Id): SP/Id differs from SP/Ip in that it updates
a page's checksum on detach() (C2.U), to further reduce
psync() latency, but relies on the Crash Handler (CrH)
routine to guarantee that the checksums on a detached PMO
will always match the data stored within it (C3). 𝑆𝑃/𝐼𝑑
performs integrity verification in the same way as 𝐵𝑃/𝐼𝑑 .

C. PMO State Transition Diagram

(d) Detach(c) Psync

Decrypt & Persist
Primary

Page into Shadow/
 Verify checksum

C
om

pl
et

e

C
om

pl
et

e

End

Copy & Persist
Shadow Page
into Primary

(b) Page Fault (PF)(a) State Transition Diagram

Verification
failedW (d)

detach

(b)
PF

D

R

detach() Complete

(c)
Psync

de
ta

ch
()

C
om

pl
et

e
(w

)

Complete (r)

attach(w)

attach(r)

ps
yn

c(
)

Complete

Pa
ge

 F
au

lt

Page Fault

psync()

CPF DP

SE
G

V

Start

Complete

Start

P

Persist Dirty
Shadow Pages/

Update
Checksum

CP
Copy &

Persist Persisted
Page(s) into Primary End

Complete ESPC
om

pl
et

e

Complete

Encrypt and Persist Shadow
Page(s) into Primary

C
om

pl
et

e

Start

EPP

CPP UC

DSEnd

Complete
Destroy Touched
Shadow Page(s)

Update
Checksum

Copy &
Persist

Shadow
Pages

Into PrimaryEncrypt &
Persist
Primary

Pages(s)
into Shadow

C
om

pl
et

e

CompleteComplete

Fig. 3: High-level state transitions for BP (red/dashed), and
SP (blue/dotted)

Our design of Low Overhead at-rest PMO Protection
(LOaPP) keeps per-PMO state information. PMO states and
transitions among them are shown in Figure 3 for all designs
i.e., BP/Ip, BP/Id, SP/Ip, and SP/Id.

a) State transition for BP, BP/Ip and BP/Id: For the PMO
state transitions in the BP, BP/Ip and BP/Id designs, consider
only the black/solid and the red/dashed parts of Figure 3.
A PMO is initially in D (detached). On attach(w) or
attach(r), the PMO transitions D → W (write) or
D → R (read). Note that BP maps PMO pages into the
address space of the requesting process only on demand. That
is to say, on a page fault, the PMO transitions W → DP

or R → DP (decrypt and persist). In the DP state, the
kernel decrypts and persists a primary PMO page into its
corresponding shadow page, computes the checksum over
the decrypted page and compares it to its stored checksum.
In the case of a mismatch, a segmentation fault is reported
(Note that checksum verification is not applicable to the BP

design). Otherwise, the PMO transitions DP → CPF (copy
and persist faulted) where the decrypted (and faulted) shadow
page is copied back and persisted into the primary page. On
completion, PMO transitions to the R or W state.

A psync() on a PMO in R triggers no state transition and
nothing happens. A psync() on a PMO in W transitions
the state W → P (persist), where all dirty shadow pages are
persisted and their checksum is updated (only for BP/Ip). Once
completed, the PMO transitions P → CP (copy and persist)
where all persisted shadow pages are copied and persisted into
their associated primary pages. Upon completion, the PMO
transitions back to W .

On detach(), the PMO states transitions in the same way
for BP and BP/Ip design, but differently for the BP/Id design.

For BP and BP/Ip, detach() transitions a PMO R → EPP

or W → EPP (encrypt and persist) where all touched primary
PMO pages are encrypted and persisted into corresponding
shadow pages. On completion, the PMO transitions EP →

CPP (copy and persist to primary) where all persisted pages
in the shadow PMO are also copied back and persisted into
associsaated primary pages. On completion, PMO transitions
to Ds (destroy) where now all uncessary shadow pages are
zeroed. Finally, the PMO transitions Ds → D .

For the BP/Id design, detach() transitions a PMO R →
UC (update checksum) where checksum of all PMO pages
written in the attach session (i.e., zero for detach(r)) is updated.
Once done, the PMO transitions to Ds (destroy) where
now all unnecessary shadow pages are zeroed. Finally, PMO
transitions Ds → D .

b) State transition for SP, SP/Ip and SP/Id: For the PMO
state transitions in the SP design, SP/Ip and SP/Id designs,
consider only the black/solid and the blue/dotted parts of
Figure 3. For sake of brevity, we explain only those transitions
that are different from the corresponding BP designs.

On a page fault, after decrypting and persisting a faulted
primary page to associated shadow page in DP , the PMO

transitions DP → W or DP → R . The decrypted shadow
page is not copied and persisted back to the primary page

(i.e., there is no DP → CPF transition). Recall that check-

7

sum verification is not applicable for the SP design. On
psync() for PMO in W , after persisting all dirty pages
in the shadow (and updating their checksum for SP/Ip) in

P , the PMO transitions P → EPP (encrypt and persist).

In EP , all the touched shadow pages are encrypted and
persisted into associated primary pages. This is required to
ensure that the primary PMO pages always remain encrypted.

Upon completion, the PMO transitions EPP → W . On

detach(), for SP and SP𝐼𝑝 , the PMO transitions R → Ds
or W → Ds to zero all touched PMO pages. Note that in
all SP designs, it is guaranteed by the last psync() that
all touched shadow pages have been encrypted and persisted
into associated primary pages. Therefore, all shadow pages
can be safely zeroed. However, on detach() for SP/I d, the
PMO transitions R → UC or W → UC (update checksum)
where all checksums are updated for all touched PMO pages
before the PMO transitions to Ds state to zero the pages.

D. PMO System Layout with Integrity Verification

Magic
#

Persistent Memory Fabric

PMO Region

Metadata Entry
Hashtable

Allocated
Node
Count

State Name Size PMO
Addr

Shad-
ow

Addr
IVPID

Addr
Boot
ID

Header
Region SMetadata

Region

4 KiB 1 GiB

P

Name Start End
Meta-
data
Start

Next
Free
PMO

Check-
sum

Checksum
Region

0
2

1
3

Fig. 4: Enhanced PMO System Layout for per-page check-
sums. Modified with permission from [13].

Regardless of whether we use 𝐼𝑝 or 𝐼𝑑 , it is necessary to
store the checksums of each page somewhere. As depicted in
Figure 4, we decided to add a new region, the checksum region,
to the PMO system. Each page has an associated checksum
that points to an entry in this region. Since each checksum
is 32 bytes (we use SHA-256), this means that each 4096
byte page has an additional 32 byte overhead. We could have
instead added the hash to the end (or beginning) of each page,
but for simplicity and for performance reasons, we decided to
store them in a separate region of the PM. This overhead can
be reduced with the use of compression.

E. Performance analysis

Since detach and page faults are far simpler (simply drop the
shadow, or decrypt the primary into the shadow), we expect
both operations to be much faster with SP when compared
to BP. On the other hand, encryption is not an entirely

free operation, so encrypting the shadow into the primary at
psync should take slightly longer. Section VIII evaluates the
performance impact of each design.

F. Crash handler

In the prior PMO design [13], the PMO system only ensured
that crash consistency was guaranteed in all circumstances. A
PMO was only ensured to be encrypted if a PMO was detached
successfully. This means that in prior work, a PMO at-rest
was not guaranteed to be secure or to have its latest checksum
(although it was always guaranteed to be crash consistent): a
PMO, at-rest or in-use, was always crash consistent, but only
secure when at-rest after a successful detach.

In contrast, we seek to extend the PMO security domain to
include some types of abnormal process termination, such as if
power is lost or a process dies. In this case, we propose a crash
handler. The crash handler performs encryption routines that
would have been performed by detach() if the process had
terminated normally. For brevity, only the crash handler with
SP will be explored.

Crash

R|W

S P

CS

ES

Copy
Encrypted

Page

Check if
shadow

is decrypted

Destroying
Shadow

DS

Copy
Complete

PMO
Secure

Fig. 5: State transitions for the crash handler

Figure 5 illustrates the crash handler’s state transitions.
Since the crash handler will run in the case of a process failure,
it cannot know which pages are dirty and which are not. All
the crash handler knows is the PMO state at the time of the
crash (which is saved within the PMO metadata) and the data
within each page. In the most common case, the PMO is in the

read or write state (R/W) and is not being synchronized; in
that case it is safe to simply drop all of the extant shadow

pages (R/W → DS). Similarly if the PMO is persisting
the shadow copy, those pages can simply be dropped without
concern (P → DS)

On the other hand, if the shadow is being encrypted into the
primary (as a result of a psync()), then the crash handler will
have to check whether a particular shadow page has data (and
thus was faulted in). If the shadow page is not null, the crash
handler will encrypt and copy the page from the shadow into
the primary for every page within the PMO (ES → CS →

8

ES), which may mean overwriting primary pages that have

already been copied over, and then drop the shadow (ES →
DS). Since the threat model assumes that any crashes are
not caused by hardware failures and does not consider attacks
against a PMO in-use, it can be safely assumed that copying
and encrypting the shadow pages will not preserve corruption.
In either the case of 𝐼𝑝 or 𝐼𝑑 , the crash handler will update the
checksums on these pages (i.e., the crash handler effectively
performs a detach()).

A simple test demonstrates that the crash handler is a
feasible way to ensure that data within a PMO are always
secure: a 1GB PMO where every shadow page has data and has
been decrypted takes approximately 2.2 seconds to perform
a detach() that encrypts each page. Assuming a PMO
system that is 120GB large, this would mean that it would
take about 264 seconds to encrypt each page of the PMO
system (a worst case scenario), or about 4 minutes. This is
more than long enough to withstand a power fault when using
an uninterruptible power supply (UPS). For example, a high-
end UPS can last for more than 6 minutes at a full-load of
2700 Watts. [27].

Note that, although we do not implement it, it is also possi-
ble to further extend the crash handler to handle circumstances
such as a kernel panic. For example, we could use a crash
kernel that runs in the case where the kernel panics [11]. With
this, as long as the system’s hardware is functioning correctly,
a PMO can be rendered secure.

VI. IMPLEMENTATION

A. Linux Crypto Subsystem

Performing encryption on individual pages, rather than on
the entire PMO, allows the kernel to take advantage of multiple
threads. The kernel encryption subsystem is multithreaded and
asynchronous. Specifically, the Linux kernel crypto API’s doc-
umentation [6] states that with regard to the Symmetric Key
Cipher API, ”Asynchronous cipher operations imply that the
function invocation for a cipher request returns immediately
before the completion of the operation. The cipher request
is scheduled as a separate kernel thread and therefore load-
balanced on the different CPUs via the process scheduler.”
When an encryption request is submitted to the subsystem, the
subsystem assigns it to a kernel thread; that thread is then free
to run on any available CPU core. This means that if multiple
pages are waiting to be encrypted at psync() time and we
are using SP, all the pages waiting can be encrypted and copied
into the primary copy in parallel. Similarly, detach()’s
performance with BP can be accelerated.

B. Crash Handler

To ensure that the stored checksum always matches a valid
copy of the PMO data, we implement the crash handler
described in the previous section. The crash handler is invoked
whenever a process dies (either normally or abnormally),
through do_exit() (which the Linux kernel always invokes
whenever a process dies, regardless of cause).

C. Nonblocking Detach

In the original implementation described in [13], detach is
blocking; i.e., the kernel does not return control back to the
process until detach() completes. This design is inefficient,
as the user process is stuck waiting on detach() even if it
does not need it. Hence, the design here is nonblocking. When
detach() occurs, a flag is set and control is immediately
returned to the user process. However, any future attach()
must wait until detach() completes.

VII. EVALUATION METHODOLOGY

All of the designs described in Section V are evaluated.
The baseline design is the Whole Encryption + Integrity Ver-
ification (WHOLEIVp) scheme, the same scheme originally
described in the Greenspan PMO system [13]. The system
used to evaluate these different designs is found in Table
III. This enhanced PMO system is a modified version of the
Greenspan PMO system described in [13], [21], which is itself
a modified version of the Linux Kernel Version 5.14.18.

TABLE III: Configuration of the PM system used for evalua-
tion

Component Specifications
Motherboard Dual socket Supermicro X11DPi-NT (w/ADR)

CPU 2×Intel Xeon Gold 6230, 20 cores, 40 threads
CPU Clock 2.1GHz (3.9GHz Boost)
CPU Cache L1: 32KiB; L2: 1MiB; L3: 27.5MiB

DRAM 4 × 32GiB DDR4 @ 2666MHz
PMEM 3 × 128GiB Intel Optane DC (PMem)

OS and Kernel 64-bit AlmaLinux 9.0; Linux 5.14.18

To switch between different PMO designs, the kernel ex-
poses a procfs file, /proc/pmo that can be read or written to.
Writing to the file changes the PMO design scheme, reading
from it produces the currently selected scheme. This allows
for running all the different PMO designs in a script, without
having to reboot to switch between schemes.

A. Evaluated Benchmarks

The following microbenchmarks are used for this evalua-
tion: 2d Convolution (2dConv), Gaussian Elimination (Gauss),
LU decomposition (LU) and Tiled Matrix Multiplication
(TMM), all from [13] and originally obtained from [10].
These microbenchmarks were ported to use PMOs by design-
ing and implementing a user-space free-list allocator and API.
This allocator implements substitutes for standard dynamic
memory functions, such as malloc() and free(), with its
own versions, p_malloc() and p_free(), respectively.

The FileBench benchmarks [28] (FileServer, VarMail,
WebProxy, and WebServer) are also used, adopted from [13]
with no modifications.

1) Microbenchmarks: Each of the microbenchmarks in-
voke psync() after a specified number of iterations of the
performance-critical loop, set to occur approximately every
second when using the original, no encryption, case. This
tempo (once per second) was chosen because Append on File
Redis (AOF Redis)’s suggested default policy is to invoke
fsync once per second [26], which is also used in other works

9

utilizing Redis such as NVMove [3]. Additional works such
as [12], [24] persist once per second and hence it is a
common standard. The benchmarks use iterations instead of
timers for consistency: using timers means that the amount of
work between synchronization calls varies based on the PMO
design, which negatively impacts the quality of the results.

Each of the microbenchmarks detach after a specified num-
ber of psync()s, from 1 − 16. For our overall evaluation of
each PMO design, we start with 2 psync()s per detach.
We do this because we anticipate that in the real-world,
most attach/detach session will not fault every page within
a PMO, but only a subset of them. Table VII-A1 shows the
configurations of each benchmark.

TABLE IV: Microbenchmark Configuration

Benchmark Configuration PMO Size
2dConv N=6144, M=104 32MB
Gauss N=8192 256 MB
LU N=7168 756 MB
TMM N=4096, Tile Size=16 196 MB

2) FileBench benchmark configuration: Filebench [28] rep-
resents I/O intensive real-world applications and is designed
for measuring I/O bandwidth performance. These benchmarks
were ported to use PMOs by [13], and we adopt them here.
It is important to note that synchronization points (psync()
invocations) are invoked at every update and a pthread barrier
is emitted before and after each psync() with the goal of
avoiding data races. Each workload was run 5 times for 30
seconds, and the result is the average between the runs. Each
workload has a different percentage of read/write operations.
FileServer (FS) uses 67% writes, VarMail (VM) has 50%,
WebProxy (WP) is 16%, and finally, WebServer (WS) is 9%.

VIII. EVALUATION

This section attempts to answer several questions: How
much more performant are the per-page designs compared
to the baseline Whole Encryption design? Is BP or SP more
performant, and in which workloads? How scalable are BP
and SP as the attach/detach size increases, and how is thread
scalability impacted? How much performance is gained with
the designs supporting integrity verification compared to the
original WED𝐼𝑝 design? What is the performance impact of
𝐼𝑝 compared to 𝐼𝑑?

A. Microbenchmark performance evaluations of per-page de-
signs

Figure 6 compares the execution times of different PMO
designs. Results are normalized to 8 threads. The results are
split into different categories: Psync Per+IV, Psync Enc/Cpy,
Detach , PF Overhead, Attach Other, Attach Stall, and
Compute.

Psync Per+IV consists of the components of psync()
that are not rendering the primary PMO crash consistent
i.e., they include invalidating the cache lines to render the
shadow copy valid and updating checksums when using the
IVp designs. Psync Enc/Cpy includes updating the primary
copy via encryption (Enc) or memcpy (Cpy) calls. Detach

0x

0.2x

0.4x

0.6x

0.8x

1x

W
E
D
I
p

B
P
g
I
p

S
P
g
I
p

B
P
g
I
d

S
P
g
I
d

W
E
D

B
P
g

S
P
g

N
E
D
I

W
E
D
I
p

B
P
g
I
p

S
P
g
I
p

B
P
g
I
d

S
P
g
I
d

W
E
D

B
P
g

S
P
g

N
E
D
I

W
E
D
I
p

B
P
g
I
p

S
P
g
I
p

B
P
g
I
d

S
P
g
I
d

W
E
D

B
P
g

S
P
g

N
E
D
I

W
E
D
I
p

B
P
g
I
p

S
P
g
I
p

B
P
g
I
d

S
P
g
I
d

W
E
D

B
P
g

S
P
g

N
E
D
I

W
E
D
I
p

B
P
g
I
p

S
P
g
I
p

B
P
g
I
d

S
P
g
I
d

W
E
D

B
P
g

S
P
g

N
E
D
I

2dConv Gauss LU TMM Average

Psync Per+IV

Psync Enc/Cpy

Detach

PF Overhead

Attach Other

Attach Stall

Compute

Fig. 6: Execution time by design, with attach session size of
2, normalized to WED𝐼𝑝

is the time it takes between when the detach system call is
invoked and when it returns control back to the user process;
since it is non-blocking, the time spent doing this is very
small. PF Overhead is the additional time over the no-
encryption case spent on servicing page faults (i.e., the time
spent decrypting the page and rendering it available to the
calling process). Attach Other is the time spent performing
all attach operations that are independent of detach (i.e., if
using the Whole design, the time spent decrypting the PMO),
while Attach Stall is the time spent waiting for the detach
thread to complete (since a detach call is immediately followed
by an attach call, this is a proxy for the time it takes for the
detach thread to complete). Finally, Compute is all other time:
the time spent not waiting on the PMO system (this includes
the base latency for servicing page faults, and the time spent
performing computation).

The performance of the individual categories matches ex-
pected performance; e.g., it makes sense that psync() calls
will be more expensive with SP rather than BP (since SP
requires encrypting the page into the primary rather than
simply copying). Similarly, attach stall times should be more
expensive since detaching a PMO using the BP method
takes additional time (the primary must be encrypted into the
shadow and then copied back, to ensure no loss of data).

With these four designs, the best performing IV design
(𝑆𝑃/𝐼𝑑) is, on average, 2.1× faster than the WED𝐼𝑝 design.
The second best design (𝐵𝑃/𝐼𝑑) is 2.03× faster; a difference
of 3%. For the non-IV designs, the performance of SP is 1.4×
and BP is 1.3× faster than WED.

1) Sensitivity Study: Figure 7 shows attach() session
sensitivity by growing the attach/detach size. The attach ses-
sion size is the number of psync()s before a detach().
For example, we perform psync() once per second. If after
each psync() we perform a detach(), then the attach
session size is 1. On the other hand, if we only perform a
detach() after 16 psync()s, then the attach session size

10

0x

0.2x

0.4x

0.6x

0.8x

1x

W
E
D
I
p

B
P
I
p

S
P
I
p

B
P
I
d

S
P
I
d

W
E
D

B
P

S
P

N
E
D
I

W
E
D
I
p

B
P
I
p

S
P
I
p

B
P
I
d

S
P
I
d

W
E
D

B
P

S
P

N
E
D
I

W
E
D
I
p

B
P
I
p

S
P
I
p

B
P
I
d

S
P
I
d

W
E
D

B
P

S
P

N
E
D
I

W
E
D
I
p

B
P
I
p

S
P
I
p

B
P
I
d

S
P
I
d

W
E
D

B
P

S
P

N
E
D
I

W
E
D
I
p

B
P
I
p

S
P
I
p

B
P
I
d

S
P
I
d

W
E
D

B
P

S
P

N
E
D
I

1 2 4 8 16

Fig. 7: Average execution time for all the microbenchmarks
with different attach sizes, normalized to WED𝐼𝑝

is 16.

0x

0.1x

0.2x

0.3x

0.4x

0.5x

0.6x

0.7x

S
P
I
d
−
1

B
P
I
d
−
1

S
P
I
d
−
2

B
P
I
d
−
2

S
P
I
d
−
4

B
P
I
d
−
4

S
P
I
d
−
8

B
P
I
d
−
8

S
P
I
d
−
1
6

B
P
I
d
−
1
6

S
P
I
d
−
1

B
P
I
d
−
1

S
P
I
d
−
2

B
P
I
d
−
2

S
P
I
d
−
4

B
P
I
d
−
4

S
P
I
d
−
8

B
P
I
d
−
8

S
P
I
d
−
1
6

B
P
I
d
−
1
6

S
P
I
d
−
1

B
P
I
d
−
1

S
P
I
d
−
2

B
P
I
d
−
2

S
P
I
d
−
4

B
P
I
d
−
4

S
P
I
d
−
8

B
P
I
d
−
8

S
P
I
d
−
1
6

B
P
I
d
−
1
6

S
P
I
d
−
1

B
P
I
d
−
1

S
P
I
d
−
2

B
P
I
d
−
2

S
P
I
d
−
4

B
P
I
d
−
4

S
P
I
d
−
8

B
P
I
d
−
8

S
P
I
d
−
1
6

B
P
I
d
−
1
6

S
P
I
d
−
1

B
P
I
d
−
1

S
P
I
d
−
2

B
P
I
d
−
2

S
P
I
d
−
4

B
P
I
d
−
4

S
P
I
d
−
8

B
P
I
d
−
8

S
P
I
d
−
1
6

B
P
I
d
−
1
6

2dConv Gauss LU TMM Average

Fig. 8: Comparison of 𝐵𝑃/𝐼𝑑 and 𝑆𝑃/𝐼𝑑 with different attach
session sizes, normalized to WED𝐼𝑝 .

Figure 8 focuses on the two most performant designs
(𝐵𝑃/𝐼𝑑 and 𝑆𝑃/𝐼𝑑) as the attach session size increases.
The results are normalized to 𝑆𝑃/𝐼𝑑 at 1. At a size of 16,
𝐵𝑃/𝐼𝑑 is slightly faster, 2.75%. What this demonstrates is that
the 𝐵𝑃/𝐼𝑑 designs are superior to 𝑆𝑃/𝐼𝑑 when performing
attach/detach infrequently, which is the expected behavior
since psync() is more expensive with 𝑆𝑃/𝐼𝑑 (encrypting
the shadow into the primary vs. simply copying the shadow
into the primary). While page faults are more expensive with
𝐵𝑃/𝐼𝑑 , a large attach/detach size means that there are fewer
pages being faulted in for the first time out of a total number of
pages accessed. This is illustrated by Figure 9. Figure 9 shows
the number of pages touched between an attach/detach session
for each benchmark by attach/detach session size (lightly
colored bars) and shows that as the number of pages touched
gets larger, the number of page faults declines relative to the
number of psync()s (darkly colored bars). All of these facts
combined means that BP tends to have better performance in
these cases.

It is important to note that in an actual real-world appli-
cation, the cost of psync may well prove to be much more
important than the cost of detach, since detach is done off the

Fig. 9: Pages accessed between attach/detach calls, by bench-
mark and attach/detach size. The darker bars are the average
number of dirtied pages between psyncs.

critical path. In an application that attaches a PMO, performs
multiple operations on it, detaches it, and does not use it for
a long-time, BP is likely to be the more performant choice.
Yet, as described in Section II, prior work by Xu, et. al. [33]
propose reducing the amount of time a PMO is attached to a
bare minimum; if this suggestion is followed, then SP is the
better option.

B. Filebench

Figure 10 compares the I/O bandwidth of different
FileBench workloads achieved by different PMO designs.
Results are normalized to 𝑊𝐸𝐷𝐼𝑝 and reported for 8 threads
with synchronization performed after every write or append
operation. On average, 𝑆𝑃/𝐼𝑑 is 2.56× faster than WED𝐼𝑝 ,
while SP alone is 3.2× faster.

0x

1x

2x

3x

4x

5x

6x

Fileserver Varmail Webproxy Webserver Average

B
a
n
d
w
i
d
t
h

(
N
o
r
m
a
l
i
z
e
d
)

Filebench Bandwidth − 8 Threads

NEDI

SP

BP

WED

SPId

BPId

SPIp

BPIp

WEDIp

Fig. 10: Filebench results, normalized to NED𝐼𝑝 .

Interestingly, with Webserver, 𝐼𝑝 is slightly more perfor-
mant than 𝐼𝑑 because WebServer calls detach much more often
than psync (9% writes, 91% reads). This allows us to conclude
that in scenarios where psync() is infrequent or does little,
𝐼𝑑 is worse than 𝐼𝑝 , which is preferable in this scenario.

C. Thread scalability of LOaPP

Figure 11a shows the thread-scalability of the PMO sys-
tem’s performance when using the best-case design (𝑆𝑃/𝐼𝑑).

11

1 2 4 8
Thread count

0

2

4

6

8
Ex

ec
ut

io
n

tim
e

2dConv
Gauss
LU

TMM
AVG

(a) Microbenchmark scalability

1 2 4 8
Thread count

0

2

4

6

8

Ba
nd

wi
dt

h
(n

or
m

al
ize

d)

Fileserver
Varmail
Webproxy

Webserver
Average

(b) Filebench scalability

Fig. 11: Thread scalability results with 𝑆𝑃/𝐼𝑑 , from 1-8
threads.

Results, normalized to a single thread, are shown for all of the
microbenchmarks when executed with 𝑁 = (1, 2, 4, 8) threads
and synchronized once per second, with an attach/detach size
of 2. Results show that performance scales for an increasing
number of threads, but Gauss and LU at 8 threads are only
about 2× faster than at 1 thread. This behavior is expected
and unrelated to PMOs; as it is an effect of the physical
property of the PM fabric (Optane), as originally discovered
by [16], [35]. Excessive numbers of writer threads slow the
PM fabric down. To verify for ourselves that this is not related
to our PMO system, we tested the microbenchmarks with
a filesystem (ext4-dax) on top of the PM; and found that
the thread scalability results remain the same. However, this
behavior does not occur when testing the microbenchmarks
with volatile memory.

Figure 11b shows the thread-scalability of Filebench with
𝑆𝑃/𝐼𝑑; these results are as expected; each thread is indepen-
dent of each other, since Filebench is really testing sustained
I/O bandwidth.

D. Correctness and Crash Consistency

To verify that the per-page encryption design is crash
consistent and secure even in the face of crashes, two different
tests are performed. First, do_exit() is inserted after a
random number of PMO page faults are handled. This causes
the associated user space process to terminate abnormally, and
invokes the PMO crash handler. Examining the contents of
the PMO after the crash handler has completed, reveals that
none of the faulted pages are visible, and that the shadow
copy of the PMO is empty. Performing this same test within
psync() after the persist stage but before the copy stage
similarly reveals that the data within the shadow are gone,

and the data from before the psync() are still in the primary
copy, as expected.

IX. CONCLUSION

Security and performance are both important design con-
siderations in persistent memory abstractions. To improve
performance, this paper introduced per-page encryption to
PMOs, and discussed the design and implementation of a
PMO system with high performance, and high reliability (crash
consistency) without reduction in security. Results show that,
compared to the prior PMO abstraction, per-page encryption
with integrity verification yields performance 2.19× and 2.62×
faster without sacrificing security or reliability. For future
work, we plan to investigate predictive decryption on attach;
where pages that have been used often in the past can be
decrypted ahead of time off the critical path, before a page
fault uses them.

ACKNOWLEDGEMENTS

This work is supported in part by the Office of Naval
Research (ONR) under grant N00014-20-1-2750, and by the
National Science Foundation (NSF) under grant 1900724.

REFERENCES

[1] Daniel Bittman, Peter Alvaro, Pankaj Mehra, Darrell DE Long, and
Ethan L Miller. Twizzler: a data-centric os for non-volatile memory.
ACM Transactions on Storage (TOS), 17(2):1–31, 2021.

[2] David Boles, Daniel Waddington, and David A Roberts. Cxl-enabled
enhanced memory functions. IEEE Micro, 43(2):58–65, 2023.

[3] Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric Schkufza,
Onur Mutlu, and Pratap Subrahmanyam. {NVMOVE}: Helping pro-
grammers move to {Byte-Based} persistence. In 4th Workshop on
Interactions of NVM/Flash with Operating Systems and Workloads
(INFLOW 16), 2016.

[4] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang
Lin, and Ten H Lai. Sgxpectre: Stealing intel secrets from sgx enclaves
via speculative execution. In 2019 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 142–157. IEEE, 2019.

[5] Jungsik Choi, Jaewan Hong, Youngjin Kwon, and Hwansoo Han.
Libnvmmio: Reconstructing software {IO} path with {Failure-
Atomic}{Memory-Mapped} interface. In 2020 USENIX Annual Tech-
nical Conference (USENIX ATC 20), pages 1–16, 2020.

[6] Kernel Development Community. Block Cipher Algorithm
Definitions. https://www.kernel.org/doc/html/v5.14/crypto/api-
skcipher.html#symmetric-key-cipher-api .

[7] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology
ePrint Archive, 2016.

[8] Peter Desnoyers, Ian Adams, Tyler Estro, Anshul Gandhi, Geoff Kuen-
ning, Mike Mesnier, Carl Waldspurger, Avani Wildani, and Erez Zadok.
Persistent memory research in the post-optane era. In Proceedings of
the 1st Workshop on Disruptive Memory Systems, pages 23–30, 2023.

[9] Hussein Elnawawy, Mohammad Alshboul, James Tuck, and Yan Solihin.
Efficient checkpointing of loop-based codes for non-volatile main mem-
ory. In 2017 26th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 318–329. IEEE, 2017.

[10] Hussein Elnawawy, Mohammad Alshboul, James Tuck, and Yan Solihin.
Efficient checkpointing of loop-based codes for non-volatile main mem-
ory. In 2017 26th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 318–329, 2017.

[11] David Fiala, Frank Mueller, Kurt Ferreira, and Christian Engelmann.
Mini-ckpts: Surviving os failures in persistent memory. In Proceedings
of the 2016 International Conference on Supercomputing, pages 1–14,
2016.

[12] Adriano Marques Garcia, Dalvan Griebler, Claudio Schepke, and
Luiz Gustavo Fernandes. Spbench: a framework for creating benchmarks
of stream processing applications. Computing, 105(5):1077–1099, 2023.

12

[13] Derrick Greenspan, Naveed Ul Mustafa, Zoran Kolega, Mark Heinrich,
and Yan Solihin. Improving the security and programmability of
persistent memory objects. In 2022 IEEE International Symposium on
Secure and Private Execution Environment Design (SEED), pages 157–
168, 2022.

[14] Rev. 010 Intel. 12th generation intel core processors, 2023.
[15] Revision 1.4 Intel. Intel architecture memory encryption technologies,

2022.
[16] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-

saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R
Dulloor, et al. Basic performance measurements of the intel optane dc
persistent memory module. arXiv preprint arXiv:1903.05714, 2019.

[17] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. Splitfs: Reducing software
overhead in file systems for persistent memory. In Proceedings of the
27th ACM Symposium on Operating Systems Principles, pages 494–508,
2019.

[18] David Kaplan, Jeremy Powell, and Tom Woller. Amd memory encryp-
tion. White paper, 2016.

[19] Awais Khan, Hyogi Sim, Sudharshan S Vazhkudai, and Youngjae Kim.
Mosiqs: Persistent memory object storage with metadata indexing and
querying for scientific computing. IEEE Access, 9:85217–85231, 2021.

[20] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, et al. sel4: Formal verification of an os
kernel. In Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 207–220, 2009.

[21] Naveed Ul Mustafa and Yan Solihin. Persistent memory security threats
to inter-process isolation. IEEE Micro, 2023.

[22] Naveed Ul Mustafa, Yuanchao Xu, Xipeng Shen, and Yan Solihin.
Seeds of seed: New security challenges for persistent memory. In 2021
International Symposium on Secure and Private Execution Environment
Design (SEED), pages 83–88. IEEE, 2021.

[23] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. A sur-
vey of published attacks on intel sgx. arXiv preprint arXiv:2006.13598,
2020.

[24] Liam Patterson, David Pigorovsky, Brian Dempsey, Nikita Lazarev,
Aditya Shah, Clara Steinhoff, Ariana Bruno, Justin Hu, and Christina
Delimitrou. Hivemind: a hardware-software system stack for serverless
edge swarms. In Proceedings of the 49th Annual International Sympo-
sium on Computer Architecture, pages 800–816, 2022.

[25] P Roberts. Mit: Discarded hard drives yield private info. Computer-
World, 16, 2003.

[26] S Sanfilippo and P Noordhuis. The redis documentation, 2016.
[27] CyberPower Systems. CyberPower PR3000 Sinewave UPS Speci-

fications. https://www.cyberpowersystems.com/product/ups/smart-app-
sinewave/pr3000/.

[28] Vasily Tarasov, Erez Zadok, and Spencer Shepler. Filebench: A flexible
framework for file system benchmarking. USENIX; login, 41(1):6–12,
2016.

[29] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah,
Amit Borase, Tamires Brito Da Silva, Steven Swanson, and Andy
Rudoff. Nova-fortis: A fault-tolerant non-volatile main memory file
system. In Proceedings of the 26th Symposium on Operating Systems
Principles, pages 478–496, 2017.

[30] Yuanchao Xu, Yan Solihin, and Xipeng Shen. Merr: Improving security
of persistent memory objects via efficient memory exposure reduction
and randomization. New York, NY, USA, 2020. Association for
Computing Machinery.

[31] Yuanchao Xu, Wei Xu, Kimberly Keeton, and David E Culler. Softpm:
Software persistent memory. In 13th Non-Volatile Memories Workshop
(NVMW), 2022.

[32] Yuanchao Xu, Chencheng Ye, Xipeng Shen, and Yan Solihin. Temporal
exposure reduction protection for persistent memory. In 2022 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 908–924. IEEE, 2022.

[33] Yuanchao Xu, Chencheng Ye, Xipeng Shen, and Yan Solihin. Temporal
exposure reduction protection for persistent memory. In 2022 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 908–924. IEEE, 2022.

[34] Yuanchao Xu, ChenCheng Ye, Yan Solihin, and Xipeng Shen. Hardware-
based domain virtualization for intra-process isolation of persistent
memory objects. In 2020 ACM/IEEE 47th Annual International Sym-
posium on Computer Architecture (ISCA), pages 680–692, 2020.

[35] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steve Swanson. An empirical guide to the behavior and use of scalable
persistent memory. In 18th USENIX Conference on File and Storage

Technologies (FAST 20), pages 169–182, Santa Clara, CA, February
2020. USENIX Association.

