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I. MOTIVATION

Please click here for PDF of original paper. Persistent
memory (PM), compared to DRAM, provides higher density,
better scaling prospect, non-volatility, and lower static power
consumption, while providing byte addressability and access
latencies that are not much slower. As a large-capacity memory
alternative to DRAM, PM can be viewed as a fast medium for
hosting a filesystem with memory-mapped files, an approach
used by several works (e.g., PMFS [2] and BPFS [3]). Al-
ternatively, PM can be used to host persistent data structures
encapsulated in objects that are managed by the OS. Several
recent works [4]–[7] manage PM using this relatively new
abstraction of persistent memory objects (PMOs).

Several existing works address security threats from the use
of PM as main memory fabric [8]–[11]. However, only two
studies (at the time this work was published) address secu-
rity threats from the PMO abstraction and its programming
model. They propose reducing the exposure window of PMOs
and PMO layout randomization [4], [7] to make it difficult
for attacks to succeed. However, they did not analyze what
attacks were possible and under what situations the protection
could be effective. This paper discusses threat models and
vulnerabilities that are either new or increased in severity by
the use of PMOs. For example, we discuss that the use of a
PMO may break the inter-process isolation guarantee that is
central to OS security protection through address spaces. This
paper also discusses the security implications of using PMOs,
by presenting how threats are affected by the underlying
assumptions and the programming model. It highlights sample
attacks made possible by the vulnerabilities and identifies
potential windows of opportunity to defend against them.

II. BACKGROUND

A PMO is a general system abstraction for holding pointer-
rich data structures without file backing [7]. PMOs are man-
aged by the OS which may provide filesystem-like namespace
and permission settings to PMOs. A user process invokes
attach()/detach() systems calls to map/unmap a PMO to/from
its address space. Once attached, the PMO data can be
accessed by load/store instructions without OS intervention.
Once detached, a PMO becomes inaccessible for the user
process. A PMO can outlast the lifetime of a process, and
can be attached by multiple processes over time. Simultaneous
attaches by multiple readers are allowed but attach by a writer
must be mutually exclusive with other readers and writers.
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III. SECURITY IMPLICATIONS OF PMOS

Persistency of PMOs and the programming model has
several security implications. 1 Since a PMO keeps persistent
data, any data corruption or bugs (dangling pointers, memory
leak, etc.) are also persistent. 2 Unlike the volatile ones, the
effect of corruption on PMO-resident data structures cannot be
erased by relaunching the process as it may cause a recurrence
of the incorrect process’s behavior. 3 As PMO data is long-
lived, it can be reused across runs of the same or different
applications. Therefore, data corruption caused by one run
directly affects the security of other runs or even unrelated
applications. 4 Unlike DRAM data, the attacker can slowly
and incrementally determine the target locations of data to
corrupt over a long period of time across different runs. 5
Since they host pointer-rich data structures, PMOs become
an attractive target for an adversary to manipulate pointers for
successful security attacks. 6 As the data of an attached PMO
is accessed via load/store instructions, these accesses are not
trapped by OS and hence not checked for security.

IV. THREAT MODEL

We consider a threat model where the payload and victim
processes share a PMO over time. While the victim has no
known memory safety vulnerabilities, the payload does. The
goal of an adversary is to use the payload process in order
to compromise the victim process. We assume the adversary
knows that a PMO is shared, knows the type of data structure,
and knows the layout of the PMO. We assume a trusted
system software such as the OS, which manages address space
isolation between processes. PMOs are also managed by the
OS which applies permission checking when granting access
to a PMO. This implies that access to a detached PMO is
not permitted and results in a segmentation fault. However, a
process can read and write a legally attached PMO.

V. ATTACK TYPES

An adversary can potentially launch both control-data and
non-control-data attacks on the victim by exploiting a PMO
shared with the payload process. To save space, we only
demonstrate an example control-data attack that alters a vic-
tim’s control data (i.e., function pointer) in order to execute
injected malicious code. Figure 1a shows a PMO hosting a
skip list and a free list that manages deallocated nodes whereas
the data structure root (DSR) field points to the start of the
skip list. Nodes are allocated from the head of the free list.
In Step 1 of the attack (Figure 1b), an adversary discovers
a function pointer (fp) in the volatile memory portion of the
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victim process’s address space with the aim of redirecting it
from code block N to M, where N is the legal block and M
is an injected or out-of-context code block.
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(d) Step 3: Activation.

1 //C points to fp-Disp
2 last_node=*T;
3 first_node=*H;
4 //makes FP point to M
5 last_node->fd=

first_node->fd;
6 *H=first_node->fd;

(e) Consolidation code.
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(f) Step 4: Seize control.

Fig. 1: PMO-based cross-process/run pointer redirection at-
tack.

In Step 2 (Figure 1c), the adversary uses a payload process
to attach the PMO, by overwriting the forward pointer fd
of the first node such that it points to M. Also, the tail
pointer is overwritten to point to the location of fp minus
a constant displacement ∆. The displacement is equal to the
difference between the address of a node and its fd pointer.
Then, the adversary persists the PMO, detaches it, and waits.
When the victim attaches the same PMO and executes the
free list consolidation code (Figure 1e) after allocating node
A, it results in fp pointing to M (Step 3, Figure 1d). Finally,
when the function pointer is used by the victim, the target
code is executed (Step 4, Figure 1f), resulting in a successful
attack altering the victim’s execution flow. Note that despite
not having an exploitable vulnerability, the victim process is
successfully attacked because it shares the PMO with another
process that does have an exploitable memory vulnerability.
The time to carry out the attack can span multiple attach/detach
sessions, and can even span across multiple process lifetimes,
as long as fp and M remain constant over the span.

VI. POSSIBLE DEFENSES

Figure 2 shows the timeline of the steps of the above attack
and opportunities for detecting and foiling the attack. First,
the address of fp and M must remain the same between
Step 1 and 3 for the attack to succeed. If the addresses
change, the attack will corrupt the PMO but not result in
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Fig. 2: Steps of cross-process/run PMO-based pointer redirec-
tion attack.

control flow hijacking. Second, the window of time between
Step 2 and 4 is the window of opportunity to detect the
attack by verifying the integrity of the data structures in the
PMO. In other words, the integrity check must be performed
before step 4 since the potential attacks get activated by that
time. The integrity of the data structure(s) can be checked by
performing topology verification. Third, in the window of time
between Step 2 and 3, if a PMO integrity problem is detected,
and a non-corrupted previous version is available, the PMO
integrity can be restored and attack foiled. However, to foil
the attack between Steps 3 and 4, the victim process must be
blocked/terminated.
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