
Persistent Memory Objects on the Cheap
Derrick Greenspan

University of Central Florida
College of Engineering and

Computer Science
Orlando, Florida, USA

derrick.greenspan@ucf.edu

Naveed Ul Mustafa
New Mexico State University

Department of Computer Science
Las Cruces, New mexico, USA

num@nmsu.edu

Jongouk Choi
University of Central Florida
College of Engineering and

Computer Science
Orlando, Florida, USA
jongouk.choi@ucf.edu

Mark Heinrich
University of Central Florida
College of Engineering and

Computer Science
Orlando, Florida, USA
heinrich@cs.ucf.edu

Yan Solihin
University of Central Florida
College of Engineering and

Computer Science
Orlando, Florida, USA
yan.solihin@ucf.edu

Abstract
Persistent Memory Objects (PMOs) are the state-of-the-art
OS-based approach for persistentmemory (PM)management.
Recent PMO designs have limited performance due to the
properties of the PM substrate. To address this challenge, this
paper introduces LPMO, or lightweight PMOs, that enables
two key performance optimization techniques: software-
based DRAM caching and prediction. First, through DRAM
caching, LPMOmoves reads/writes to a faster medium, while
retaining crash consistency. Second, LPMO introduces software-
based predecryption to predict when pages might be used
and decrypt them ahead of time.

Our evaluation shows that software-based DRAMCaching
and software-based predecryption with LPMO can improve
the performance of a PMO system by up to 1.25× compared
to the prior state-of-the-art implementations when using
LPMO locally. When bundled with a stream predictor, the
improvement reaches 1.81×, depending on the workload.
To further demonstrate the flexibility and performance

benefits of our LPMO design, we evaluated our solution in
a CXL memory system and introduce a CXL memory hier-
archy that our LPMO system can configure. In such a CXL

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3734533

system, when integrated with CXL Enhanced Memory Func-
tions (EMFs) that perform encryption in hardware, LPMO
is capable of performing comparably or in some workloads
faster than the prior state-of-the-art design, despite the added
latency of CXL memory.

CCS Concepts
• Software and its engineering → Memory manage-
ment; • Hardware → Non-volatile memory.

Keywords
Persistent memory, CXL, memory abstractions
ACM Reference Format:
Derrick Greenspan, Naveed Ul Mustafa, Jongouk Choi, Mark Hein-
rich, and Yan Solihin. 2025. PersistentMemoryObjects on the Cheap.
In 2025 International Conference on Supercomputing (ICS ’25), June
08–11, 2025, Salt Lake City, UT, USA. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3721145.3734533

1 Introduction
Persistent Memory (PM) allows fast byte-addressable data ac-
cess (like DRAM) but retains data on power loss (like storage).
Examples include memory-semantic SSDs and the discontin-
ued [30] Optane Pmem [28]. PM enables utilizing persistent
data in a byte-addressable fashion, either to host a file sys-
tem [40], or to use file-less abstractions such as the Persistent
Memory Objects (PMOs) [37, 41, 42]. PMOs hold (potentially
pointer-rich) data structures that can be directly accessed
through load/store instructions, but have naming, permis-
sion, and crash consistency managed by the Operating Sys-
tem (OS). After being created, a user process must attach()
a PMO into its address space to successfully access PMO data,
and can later unmap it by calling detach(). All updates to
the PMO data are made persistent at explicit points in the

1234

https://orcid.org/0000-0001-9425-0681
https://orcid.org/0000-0002-0650-3464
https://orcid.org/0000-0001-7378-6196
https://orcid.org/0000-0002-2843-5503
https://orcid.org/0000-0002-8863-941X
https://doi.org/10.1145/3721145.3734533
https://doi.org/10.1145/3721145.3734533
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3721145.3734533&domain=pdf&date_stamp=2025-08-22

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Derrick Greenspan, Naveed Ul Mustafa, Jongouk Choi, Mark Heinrich, and Yan Solihin

△ 2dConv, ◦ Gauss, □ LU, × TMM, ⊲ AVG

1 2 4 8 160
4
8

12
16
20

Sp
ee
du

p

Figure 1: Microbenchmarks [12] scalability by thread
count using PM (with the x-axis representing the num-
ber of threads).

program via psync() system calls. The semantics of psync
are atomic and crash consistent: it fully succeeds or fully
fails, and if a crash happens, the PMO state is guaranteed to
revert to one from the last successful psync. This is achieved
through shadowing, where modifications are performed on a
shadow PMO copy and merged into the primary copy upon
psync.
During its lifetime, a PMO is either in-use (i.e., attached

to a process) or at at-rest (i.e., detached from any processes).
Since many PMOs are expected to spend most of their life-
time at-rest (like files), similar to the file system, they need
to be encrypted and integrity-protected while at-rest [14].
Therefore, PMOs must first be decrypted and their integrity
verified at attach time, and encrypted and protected by a
message authentication code (MAC) at detach time. How-
ever, the attach-time decryption and integrity check intro-
duce substantial performance penalties, both in terms of the
critical-path delay and scalability.
To analyze this problem, we evaluated the state-of-the-

art LOaAPP PMO design [14] in a real system with Intel
Pmem. We ran four benchmark applications: 2d Convolution,
Gaussian Elimination, LU Decomposition, and Tiled Matrix
Multiplication, varying the number of threads from 1 to 16.
Figure 1 shows the speedup ratios of several benchmarks
from 1 to 16 threads with the state-of-the-art Linux-based
PMO [14]. Except for 2d Convolution, which is not particu-
larly memory intensive, all benchmarks show poor speedup
scaling, e.g. only ≈ 3× at 16 threads for LU.
There are several reasons for the high performance over-

heads and low scalability. PMOs are hosted entirely in the
PM [14, 15] where access latencies are high (especiallywrites)
andwrite bandwidth is low, while DRAM is completely unuti-
lized. This makes sense to ensure no data is lost on a crash.
However, PMOs are particularly challenging to use beyond
PM-based memory systems. Adapting PMOs to disaggre-
gated memory or server systems, such as those leveraging
CXL with heterogeneous memory devices [13, 25, 39], is dif-
ficult. In these environments, PMOs storage of data directly
in PM not only introduces the inherent overhead of the CXL
controller but also adds additional switching overheads. Fur-
thermore, this approach underutilizes both CXL-attached

DRAM and local DRAM, leading to inefficient memory us-
age and diminished performance.
To address these performance and scalability challenges,

we found that leveraging the semantics of psync, which
allows for some data loss up to the last successful psync, is
critical. By understanding this, we can optimize the usage of
DRAMwith PMOs. In particular, we propose placing shadow
pages on DRAM where modifications are performed, and at
psync, these modifications are then merged to the primary
copy of the PMO. If a crash occurs, pages in DRAM are lost,
but we can still adhere to the crash consistency semantics of
psync [15] by ensuring that there is always a valid copy in
PM during the process.
While placing shadow pages in DRAM improves perfor-

mance thanks to faster accesses, there are new challenges
that arise. One challenge is that accessing a DRAM-resident
shadow page still requires decryption and integrity verifica-
tion following a page fault; unless this critical-path delay is
addressed, its performance gain may be severely constrained.
Second, it is unclear whether the shadow page should be kept
in plaintext or ciphertext in DRAM. To address these two
challenges, we propose a predictor whereby the next 𝑛 pages
that are likely accessed are faulted, decrypted, and verified
in advance. This not only can potentially hide decryption
and integrity verification latencies, it can also hide page fault
delay. We refer to our solution for more performant security
of at-rest PMOs as Light PMO, or LPMO.
The LPMO system must be designed carefully. Since the

predictor itself runs in the kernel, it must be lightweight and
quick to generate predictions. At the same time, the predic-
tor must achieve high accuracy (i.e., how many predicted
decryptions are later found to be correct), high coverage (i.e.,
what percentage of decrypted pages were decrypted ahead
of time by the predictor), and timeliness (i.e., the percentage
of predicted pages that were fully decrypted by the time the
page fault occurs).

Finally, LPMO leverages a software-based memory tiering
mechanism to allow the designation of any memory devices
as software-managed (exclusive) caches, offering (logically)
reconfigurable memory hierarchies. This property is ideal for
disaggregated memory systems such as the types of systems
that CXL envisions; it allows us to leverage local DRAM or
CXL-attached DRAM as caches for free, thereby improving
performance by reducing the need for frequent access to
slower memory tiers. We demonstrate that LPMO is viable
on CXL devices, despite their added latency. To the best of
our knowledge, LPMO is the first work to enable secure
handling of persistent data in CXL-enabled PM.
We implemented LPMO on a real OS (Linux) and evalu-

ated it on a real system that has a mixture of DRAM and
Intel Optane Pmem as main memory, in both local and (sim-
ulated) CXL-memory configurations. We found that LPMO

1235

Persistent Memory Objects on the Cheap ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

achieves up to 1.25× speedup over a state-of-the-art PMO.
When combined with page prediction, the speedup improves
further to 1.81×. In CXL-memory configurations, LPMO can
improve the performance by up to 3× compared to the local
PM-based PMO systems, despite the added latency of CXL.
Overall, we make the following contributions in this work:

(1) We propose utilizing DRAM and leverage psync se-
mantics to place shadow pages in DRAM.

(2) We propose a predictor to perform page faults, decryp-
tions, and integrity verification for pages for which
their shadows are likely to be created in the near fu-
ture.

(3) We implement LPMO and integrate it into a real OS.
(4) We extensively evaluate LPMO’s performance for sev-

eral workloads and perform a thorough design space
exploration. We show that LPMO achieves up to 1.25×
speedup over a state-of-the-art PMO system (LOaPP [14]).
When combined with page prediction, the speedup
improves further to 1.81×. We also demonstrate that
LPMO achieves better scaling as the number of threads
increases.

(5) We show that LPMO can be used with CXL-enabled
PM devices and negate the performance penalty from
CXL switch latency, and that LPMO lends itself well
to different CXL architecture configurations.

2 Background and Motivation
2.1 Persistent Memory Objects
In contrast to hosting a file system on PM, PMOs host data
structures in PM without file backing. They allow direct
access using loads/stores and avoids the complexity of recon-
ciling file metadata semantics and virtual memory semantics.
Furthermore, PMOs can use the entire PM device’s write
bandwidth [21], which is important given the limited write
bandwidth in PM when compared to DRAM.

The PMOdesign treats PM as a collection of byte-addressable
objects. Persistent data within a PMO are stored in structures
that have the potential to be pointer-rich, and the required
metadata are handled by the kernel. A PMO is created with
pcreate(), attached into the address space of the calling pro-
cess with attach(), severed from the calling process with
detach(), and synchronized with psync(). We adapt the
Greenspan PMO (GPMO) [15, 31] system with LOaPP [14]’s
optimizations, as it is the only available PMO system that
works on real hardware and has been implemented on a real
system.

2.2 Crash Consistency
A technical failure can cause data stored within a PM system
to be corrupted as a result of partial or improperly ordered

writes. To prevent this, PM systems must ensure crash consis-
tency. Logging and shadowing are twomethods for achieving
crash-consistency; logging tends to be used with filesystem
approaches [40], while the GPMO system uses shadowing
by maintaining a primary and shadow copy of each modified
page within a PMO. The system ensures that at least one of
the primary or the shadow copy of the PMO remains consis-
tent, with the valid copy being used to restore the PMO in the
event of a crash rendering the data otherwise inconsistent.

2.3 Per-page encryption
Prior works with PMOs observe that their performance when
using integrity verification and encryption are lacking, es-
pecially with larger PMOs, because the entire PMO is en-
crypted/decrypted and its integrity is validated at every
attach/detach [15]. To fix this, a recent work, LOaPP [14]
breaks PMOs into separate pages to improve performance.
However, that work does not utilize DRAM and does not
perform prediction or perform decryption ahead of time.

2.4 Cache and Page Prediction
Most prior work involving data prefetching are performed
in hardware for the cache, and involve either stream buffers
or correlation tables. Stream buffers provide spatial local-
ity by copying contiguous blocks of memory into the local
cache after a previous cache miss. In contrast, correlation
tables provide temporal locality by correlating cache misses
with accesses to predict when a page might be needed [17].
Most prefetching designs are hardware-based, such as with
a prefetching engine [36] or a correlation table that inter-
cepts L2 Cache calls [38]. While we leverage such prediction
techniques, our design distinguishes itself by running the
prediction in software, integrated into the kernel and its
page fault handlers. As such, our design is attractive since it
requires no hardware changes, though it needs to be light-
weight to be effective.

2.5 Compute Express Link Memory
Compute Express Link (CXL) has obtained significant re-
search interest thanks to its exceptional capabilities in man-
aging hardware heterogeneity and enabling resource disag-
gregation. In this context, researchers have also introduced
CXL-attached PM for secondarymemory expansion [1, 9, 45].
CXL memory devices use the CXL protocol which physically
uses the PCIe interface [9] and allows for attaching/detaching
arbitrary devices to a systemwhile retaining cache coherency
between the device and the processor. There are three types
of CXL devices. CXL Type 1 devices possess cache coherency
with host memory but do not have their own separate mem-
ory, only a separate cache and the ability to directly access
host memory. CXL Type 2 devices provide bidirectional cache

1236

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Derrick Greenspan, Naveed Ul Mustafa, Jongouk Choi, Mark Heinrich, and Yan Solihin

coherency and usually possess their own device memory;
both the host and the device itself can access each other’s
memories directly. CXL Type 3 devices operate as memory-
expander devices. These devices have no cache, only memory
that can be accessed and cached by the host CPU. For this
work, we assume our CXL-based PM uses Type 3 Memory.

2.5.1 Flat Memory Hierarchy. PM devices that use CXL are
often directly connected to the CXL controller, presenting
itself as flat memory to the host [45]. Due to this flat memory
hierarchy, applying PMO to CXL-attached PM inherently
exposes the long latency of PM operations to the host. This
configuration forces the host to treat CXL-attached PM as
main memory, resulting in unavoidable latency overheads,
such as a 3x slowdown in memory operations [25]. This is
compounded by the fact that PM has pathologies that cause
performance degradation when multiple threads attempt
to write to it at the same time [20]; some applications are
impacted by this more than others.

2.5.2 CXL Protocols. CXL contains three separate protocols:

CXL.io. The CXL.io protocol manages device configura-
tion, memory-mapped I/O (MMIO), interrupts, and DMA
operations, and monitors the status of devices. CXL.io en-
sures the system is aware of the available devices and can
communicate with them. While it handles I/O tasks and de-
vice management, it does not directly participate in memory
operations but remains essential for setting up and maintain-
ing the operational state of CXL devices.

CXL.cache. The CXL.cache protocol facilitates cache co-
herency between the host and CXL-attached devices. It is
designed to enable devices, such as accelerators and network
adapters, to cache data from the host’s memory, ensuring that
data remains consistent across multiple caches. This protocol
allows devices to read, modify, and write back cache lines
while maintaining coherency, similar to traditional cache-
coherency protocols like MESI.

CXL.mem. The CXL.mem protocols enables direct access
to memory on CXL-attached devices by mapping remote
memory into the system address space. It allows the host
processor to treat CXL memory devices as an extension of
its own memory, similar to accessing local memory. The
protocol ensures that memory devices attached via CXL can
be virtualized using a hypervisor, making it compatible with
virtualization technologies and useful for cloud and data
center environments.

CXL.mem allows for dynamic memory expansion and the
creation of large, shared memory pools that can be accessed
by multiple hosts. In particular, the protocol specifies how
data are transacted between the CPU and memory devices
on the CXL bus, and is broken up into memory requests from

the master to subordinate (M2S) and memory responses from
the subordinate to master (S2M).

2.5.3 CXL Access Latency. The performance characteristics
of CXL devices show that CXL memories are significantly
faster than alternatives such as RDMA [13] (8.3× faster), but
still far slower than local DRAM (5.5× slower). In general, the
latency of accessing memory through CXL memory pools
are higher than the latency of accessing memory through
NUMA [39], but it can vary significantly depending on the
number of switches used within the pool. For our work, we
use only one, which makes it easier for us to treat NUMA as
a proxy for CXL devices.

2.5.4 CXL at-rest encryption. To the best of our knowledge,
there have been no proposed work for at-rest encryption for
CXL-attached PMs. The closest work is ShieldCXL [3], which
utilizes CXL’s support for at-rest encryption to produce
Oblivious RAM (ORAM). However, ORAM focuses on miti-
gating side-channel attacks, which is not our threat model
(see Section 3).

One might suggest utilizing enhanced memory functions
(EMFs) as articulated by [1] and provided by the CXL proto-
col. These EMFs include encryption/decryption of memory
at rest. In particular, CXL 3.1 recently introduced the Trusted
Execution Environment (TEE) Security Protocol (TSP) for
CXL devices. The CXL TSP provides for, among other things,
at-rest memory encryption that are within the target mem-
ory device [6].
There are two types of at-rest memory encryption on

the target device that can be used with CXL. First, there is
Range-based Memory Encryption, where the initiating device
configures a specific Host Physical Address (HPA) range to
use a specific encryption key. Second, there is Context Key
Identifier (CKID)-based Memory Encryption, where a specific
key is utilized for a given CXL transaction, rather than for an
entire memory range. However, this has not yet been utilized
for at-rest memory security; we discuss it in more detail in
Subsection 5.2.1.

2.5.5 Integrity Verification. Unfortunately, the CXL spec-
ification 3.1 does not provide at-rest integrity verification
within the TEE; rather, it only provides assurances of in-
tegrity verification as the data moves down the wire from
within the CXL domain. Although data integrity is important
for at-rest PM security, the integrity verification is outside
of the scope of the CXL TEE, in Subsection 5.2.2, we discuss
how LPMO achieves data integrity on CXL devices.

2.5.6 Persistent Memory Objects in CXL. In this work, we
argue that we can unlock the full potential of CXL memory
by 1) allowing for a reconfigurable memory hierarchy for
LPMO systems, and 2) for the first time, utilizing the CXL
TEE for at-rest encryption.

1237

Persistent Memory Objects on the Cheap ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

3 Threat and Trust Model
Similar to files, PMOs keep persistent data for a long time,
and most of them will spend most of their lifetime at rest.
Our threat model assumes the attacker’s goal is to either
reveal or tamper with the confidential data belonging to a
user-process stored within an at-rest PMO. We assume that
the attacker knows or has the capability to find the location
of the target PMO in memory.

One attack we consider is data remanence, where a stolen
or improperly disposed of PM may be analyzed by the at-
tacker to obtain sensitive data. Such attacks have long been
documented for files in hard drives [35] and prompted filesys-
tem encryption which is widely used today. Likewise, PMO
encryption was motivated by the same concerns [14].

Another attack we consider has the adversary compromise
a user account to steal or corrupt PMO data. But without
having the correct key, the attacker cannot read the plaintext
of PMO data, or modify PMO data without being discovered
later. PMO encryption keys can be further managed by a
Trusted PlatformModule (TPM) to avoid the attacker reading
keys from memory.
Since our design adopts the threat model of filesystem

encryption (i.e., protecting data at-rest rather than in-use.),
protecting plaintext data in DRAM from data remanence at-
tacks is out of our scope. However, our LPMO system can be
integrated with well-known DRAM protection mechanisms
such as MBIST for memory resetting, zeroization [26], Intel
Total Memory Encryption (TME) [2], or AMD Secure Mem-
ory Encryption (SME) [22], which have low overheads since
they rely on hardware. Similarly, side-channel attacks are
out of scope for our work too, as our threat model follows
that of prior PMO works [14, 15, 31, 32, 42, 43].

Our trust is limited to specific components of the system
software, Linux Kernel Crypto API [5], crucial kernel mem-
ory functions like memcpy and memset, and our PMO kernel
subsystem. We assume that these components are devoid of
any code vulnerabilities, which is plausible because the total
code size is small enough for formal verification [23]. Finally,
we trust the encryption hardware of the CPU.

We describe the steps of the attack. Lacking either en-
cryption or integrity verification, it proceeds as follows: 1)
The attacker discovers the physical address (PA) of the PMO.
2) The attacker maps the PMO to its address space, and 3)
performs the attack by either corrupting the PMO by writing
incorrect data, which will not be caught in the absence of
integrity verification [32], or alternatively, in the absence of
encryption, the attacker can read from the PMO and steal
secrets from it. In either case, the attacker is able to do these
actions silently, by simply 4) unmapping the address space
of the PMO from the attacker process’s address space, which
leaves no evidence that the PMO was accessed or modified.

4 LPMO Design
4.1 DRAM Shadow Paging
Prior PMO systems placed each PMO entirely in the PM, both
shadow and primary pages. While in this approach the PMO
retains data on power loss (or crashes), it suffers from high
access latencies (especially writes) and low write bandwidth.
Furthermore, a typical memory system with PM has a mix-
ture of DRAM and PM, and the DRAM is underutilized. To
benefit from DRAM, we could consider placing both primary
and shadow pages in DRAM. However, while accesses are
fast, data in such pages will be lost on crashes. Thus, we
propose a solution where only the shadow pages are placed
in DRAM, while primary pages are placed in PM. On a crash,
only the shadow pages are lost.
Although our approach incurs some risk of data loss, we

note that as long as the data loss is limited to any modifica-
tions after the last successful psync(), the PMO semantics
are not violated. To benefit from DRAM while adhering to
the PMO semantics, our solution requires that data in shadow
pages are merged into the primary pages on each psync (after
being flushed from volatile caches). The cost of this merging
is that psync takes slightly longer to complete. However, con-
sidering that reads and writes occur much more frequently
than psync, this trade-off is worth it.

Another design issue is whether the shadow and primary
pages should stay encrypted or decrypted. First, if both pages
stay encrypted, the shadow will be in DRAM while the pri-
mary remains in PM. This approach is infeasible (at least
without special hardware support) because PMO data is ac-
cessed using loads/stores which are in plaintext. The second
possible approach is to keep both pages in plaintext. Here,
every time a PMO page is written, the page fault decrypts
the primary page, and allocates a decrypted shadow page
in DRAM. This allows the page to be accessible using reg-
ular loads/stores, and psync involves simple copying from
shadow to primary. However, it requires the primary pages
to be encrypted in PM immediately upon a detach or crash.
While possible, this requires two new hardware supports: a
reliable crash detector, and spare energy to complete encryp-
tion post-crash. Instead, our approach keeps the shadow in
plaintext (accessible to loads/stores) while the primary is in
ciphertext (so no special hardware for post-crash processing
is needed). The cost is minor: a psync involves encrypting
the shadow into the primary instead of copying it.
To elaborate on our design, Figure 2 illustrates the state

transitions required to support DRAM caching. The overall
state transition diagram is provided in (a). A LPMO is initially
in the D (detached) state. Upon an attach() with read (r)
or write (w) permissions, the LPMO transitions D → W
(write) or D → R (read) state. Upon a page fault (b), the

1238

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Derrick Greenspan, Naveed Ul Mustafa, Jongouk Choi, Mark Heinrich, and Yan Solihin

LPMO transitions → Dc (decrypt and copy to DRAM). In
this state, the kernel decrypts and copies a faulted LPMO
page into a DRAM cache and verifies the checksum of the
page (if enabled). If the decrypted checksum and the expected
checksum do not match, the kernel causes the process to
generate a segmentation fault.
A psync call (c) on a LPMO in a R (read) state causes

nothing to happen, but a psync call on a LPMO in a W
(write) state causes the PMO to transition → EP (encrypt
and persist), where all pages in DRAM that are marked
as dirty are encrypted and then copied and persisted (via
memcpy_flushcache()) into a temporary shadow copy (TSC)
that exists in the PM. The LPMO then transitions→ Tc (TSC
copy). These pages are then copied from the TSC into the
primary, ensuring that the data are always in a crash con-
sistent state. Compared to prior work, psync is now slightly
slower since two copies are performed, rather than a persist
followed by a copy, but this should be offset by the fact that
DRAM is significantly faster than PM.

(d) Detach(c) Psync

Decrypt & Copy
Page into DRAM

C
om

pl
et

eEnd

(b) Page Fault (PF)(a) State Transition Diagram

Verification
failedW (d)

detach

(b)
PF

D

R

detach() Complete

(c)
Psync

de
ta

ch
()

C
om

pl
et

e
(w

)

Complete (r)

attach(w)

attach(r)

ps
yn

c(
)

Complete

Pa
ge

 F
au

lt

Page Fault

psync()

Dc

Start

Start

EP

Encrypt and
Persist Dirty DRAM

 pages into TSC

EndTc

Complete

Copy Dirty Page(s)
from TSC into

Primary

Complete

Start UC

End

Update All modified page's
Checksum

Complete

Complete

Predict Decrypt
pages

Free DRAM
pagesDT

Destroy all TSC
Page(s)

N
on

bl
oc

ki
ng

Pr
ed

ic
t

SE
G

V

Figure 2: LPMO state diagram.

Finally, on detach (d), the LPMO transitions→ UC (Up-
date Checksum), which, if Integrity Verification is enabled,
updates the checksum of those pages that have been mod-
ified. The kernel then frees the DRAM pages allocated for
the PMO, the PMO then transitions→ DT (Destroy TSC),
the kernel erases the TSC pages, and the call returns.

4.2 Page Access Prediction
While our DRAM shadow paging helps performance, access-
ing the page for the first time still requires a page fault (to
place the shadow page into DRAM), decryption, and integrity
verification. Together, these incur a substantial critical-path

delay that places an upper-bound on performance improve-
ments. To tackle such delays, we propose predicting access
patterns, decrypting them into DRAM, and verifying their
integrity, ahead of time.

For this to work, several things must be achieved simulta-
neously. First, the predictor itself is software that runs in the
kernel and occupies CPU time, hence it must be lightweight
and fast in generating predictions. At the same time, the
predictor must achieve high accuracy (what percentage of
pages decrypted ahead of time are later found to be correct)
to avoid excessive PM read and DRAM write bandwidth con-
sumption and CPU occupancy. Second, the predictor must
achieve high coverage (what percentage of accessed pages
were decrypted ahead of time) to produce meaningful per-
formance improvements. Finally, the predictor must exhibit
high timeliness (what percentage of predicted pages that
were fully decrypted by the time the page fault occurs) to
actually be beneficial.

To satisfy all of these requirements, we use a page-usage
pattern predictor based on stream buffers [33]. Stream buffer
predictors are lightweight and can achieve sufficiently high
coverage, accuracy, and timeliness. We try several different
prediction depths to evaluate all three properties.

Returning to Figure 2, the dashed lines are the added com-
ponent for handling page prediction. When a page fault oc-
curs, the kernel checks whether the page is already decrypted
from a previous prediction, and if so, skips the decryption
and copy step. In either case, the prediction handler (which is
nonblocking) is invoked. The prediction handler predicts the
next 𝑋 sequential pages that are likely to be accessed next,
then runs 𝑋 number of decrypt, verify, and copy operations
on 𝑋 number of pages ahead of the faulting page, depending
on its depth. We refer to 𝑋 as the stream depth.

A key challengewith prediction is ensuring that the predic-
tion and page fault code do not occur at the same time. To do
this, the kernel locks the page via a mutex, future page faults
on the page then wait until the decryption completes, and
then skips the decryption step (by calling remap_pfn_range())

4.3 Page Access Predictor Evaluation
To determine how effective our stream buffer design is, we
evaluate our predictor based on different properties (accu-
racy, coverage, timeliness) and then analyze the access pat-
tern. Figure 3 illustrates the properties of our predictor for
four benchmarks. Assuming decryption on page fault in soft-
ware (as done by LOaPP’s authors [14]) and denoted by 𝑆 , we
see that 2d Convolution, LU Decomposition, and Gaussian
Elimination have good accuracy, coverage, and timeliness
(although LU’s accuracy drops as the size of the stream in-
creases). Interestingly, although Tiled Matrix Multiplication
has good coverage and timeliness when using stream buffers

1239

Persistent Memory Objects on the Cheap ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

0%

20%

40%

60%

80%

100%

S
2

S
4

S
8

S
1
6

S
I
2

S
I
4

S
I
8

S
I
1
6

Gaussian Elimination

0%

20%

40%

60%

80%

100%

S
2

S
4

S
8

S
1
6

S
I
2

S
I
4

S
I
8

S
I
1
6

2D Convolution

0%

20%

40%

60%

80%

100%

S
2

S
4

S
8

S
1
6

S
I
2

S
I
4

S
I
8

S
I
1
6

LU Decomposition

0%

20%

40%

60%

80%

100%

S
2

S
4

S
8

S
1
6

S
I
2

S
I
4

S
I
8

S
I
1
6

Tiled Matrix Multiplication

Figure 3: Prediction Accuracy, Coverage, and Timeli-
ness for the four microbenchmarks with (𝑆𝐼) and with-
out (𝑆) integrity verification.

of sizes 8 and 16, its accuracy is consistently around 60%.
Also, across all benchmarks, prediction accuracy, coverage,
and timeliness are not significantly different with and with-
out Integrity Verification.

(a) Gauss (b) 2dConv

(c) LU (d) TMM

Figure 4: Access patterns.

To determine whether these characteristics are expected
for these workloads, Figure 4 shows the overall access pat-
terns for each. Each gray dot represents a page fault. 2d
Convolution, Gaussian Elimination, LU Decomposition all
have access patterns that stream buffers catch. Tiled Matrix
Multiplication however suffers in accuracy regardless of the
stream depth size.

5 LPMO with CXL

CPU

(a) CXL Attached PM,
No DRAM

(b) CXL Attached PM,
Local DRAM

PMPM

CPU

PM

CPU

Memory
Expander

DRAM

Memory
Expander

Memory
Expander

(c) CXL Attached PM,
CXL Attached DRAM

DRAM

Figure 5: (a): Design C, (b): Design CL, (c): Design CF.

We envision that the LPMO abstraction can be applied
both to local and CXL-attached PM systems, enabling new
memory hierarchies such as those shown in Figure 5. Figure
5(a) depicts a system with PM attached to the CXL memory
expander and no DRAM cache. Figure 5(b) depicts a LPMO
system with attached PM and a DRAM cache that is local
to the processor, and not associated with CXL. The final
Figure 5(c) depicts a LPMO system with both DRAM and PM
attached to the CXL Memory Expander. This paper refers
to the design choices depicted in Fig. 5(a), (b), and (c) as
Design C, Design CL, and Design CF, respectively. Table
1 summarizes the different advantages and disadvantages of
the three designs depicted in Figure 5.

5.1 Reconfigurable Memory Hierarchy

Table 1: CXL Architecture design trade-offs.

Design Advantages Disadvantages

C Faster psync
Simple to implement

CXL latency
Slow write speed
Poor multithreading

CL Symmetric read/write
No additional CXL latency

Uses local DRAM
Limited cache size
Psync slower

CF Symmetric read/write
Flexible memory config

CXL latency
Psync slower

5.1.1 Design C. Pond [25] demonstrated that CXL adds
≈ 75ns relative to local DRAM, due to the overhead from
the external memory controller. In the first design, the CXL-
attached PM will therefore have an additional latency of
≈ 75ns, and all reads/writes to any data within a PMO will
incur at least that latency, along with the latency of the PM
fabric. In addition, since PM has asymmetric read/writes,
write speed to the PM fabric will be even further reduced.
Finally, multithreading performance will also be poor [20].
The main benefit of this design is that there is no need for

1240

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Derrick Greenspan, Naveed Ul Mustafa, Jongouk Choi, Mark Heinrich, and Yan Solihin

additional memory devices to be used as a cache (e.g., DRAM)
to handle the LPMO system, which makes it simple to im-
plement. Psync is also slightly faster under this system than
the other design choices.

5.1.2 Design CL. In this design, the CXL-attached PM will
retain the extra ≈ 75ns latency upon the first fault, but
read/write to PMO data after the page has been faulted in
will be significantly faster since the DRAM used as a cache
with the PMO system will be on the local node. The main ad-
vantage of this design is that read/write operations on cached
pages will experience no further CXL access latency, and
there will be symmetric read/write performance to PMOs
after the first fault. The main disadvantages are that 1) psync
will be somewhat slower, since it will require two copies to
PM rather than just a persist followed by the copy, 2) this will
use the same pool of local DRAM as other components of the
system, and 3) since the size of PM on the memory expander
might be significantly larger than the size of available local
DRAM, the amount of PMO data that is cacheable might be a
much smaller fraction of the total size of the LPMO system.

5.1.3 Design CF. In this design, the CXL-attached PM and
DRAM share a memory expander. The added latency will
therefore be ≈ 75 ns for both PM and DRAM. This design
splits the difference between designs C and CL: DRAM will
provide symmetric read/write latencies, and we can include
significantly higher amounts of DRAM than what can be
included locally, but the trade-off is that the CXL access
latency is still higher than the local access latency.

5.1.4 Discussion. There could be a possible fourth design
Design CA, that we do not evaluate, but we mention for
completeness and as consideration for future work. This
design would use a CXL Type 2 Accelerator device instead of
a Type 3 Memory Expander. The device could have its own
local memories and directly cache data from PM without
relying on the host.

5.1.5 Psync. Asmentioned above, designsCL andCF intro-
duce a minor complexity in handling synchronization. Since
the working copy is in DRAM and not in the shadow PM
page, psync() takes slightly longer to complete, since the
persistent step is now a copy (from DRAM into the shadow
PM page) followed by another copy (from DRAM into the
primary PM page).

5.1.6 Memory Tiering. The ability to reconfigure mem-
ory means that it is possible to configure it to use hierar-
chal or flat memory ad hoc, depending on the needs of the
programmer. It is also important to note that, unlike prior
software-managed tiering approaches [11, 27, 44], LPMOs
do not rely on tracking memory hotness. Instead, it employs

a one-to-one mapping of PM to the designated cache, un-
der the assumption that the cache size matches the PM size.
This design minimizes overhead on the host CPU, making it
lightweight and efficient; we leave software-based hotness
tracking and fine-grained data placement in the context of
LPMOs as future work.

5.2 Hardware Support for Memory Security
5.2.1 Memory Encryption Design considerations. As men-
tioned in Section 2, the CXL TEE [6] specification describes
two different types of at-rest memory encryption for CXL
Memory. The first type of at-rest memory encryption is
CKID-based Encryption, the second type is Range-based En-
cryption.

CKID-based Encryption. CKID-based encryption uses
the CKID field within the CXL Transaction Layer for the
CXL Memory protocol (CXL.mem). The CKID field is used
to identify a specific key to be utilized for decrypting or
encrypting the contents of a given M2S memory transac-
tion. The maximum number of CKID keys envisioned by
the CXL Specification is 213, or 8192 keys, as specified in the
"Number of CKIDs" field reported by "Get Target Capabilities
Response", per the CXL TSP specification. This would mean
that the LPMO system could only support up to 8192 PMOs
without having to reuse CKID keys, which is clearly too
small; a device hosting a PMO system could easily exhaust
this limit.

Range-based Encryption. Range-based encryption uses
memory range registers that are configured by the device to
associate a specific encryption key with a specific host phys-
ical address range. Read/write operations to that memory
range use that encryption key, and there is no need for the
memory transaction to explicitly invoke it: it is done automat-
ically. The maximum range ID the CXL system can support
is 216, or 65000 keys. This would mean that the system would
only support up to 65000 PMOs. This is a significantly larger
number compared to CKID encryption. In our design, we
use range-based encryption.

Encryption Standards. According to the CXL specification,
CXL devices may support two different types of encryption
standards [6], AES-XTS-128 and AES-XTS-256. Although the
specification states that the device can use alternative algo-
rithms, only these two are explicitly supported. However, like
with CKID and Range-based encryption, these two encryp-
tion standards are mutually exclusive; only one bit for the
"Memory Encryption Algorithm Select" may be active at one
time. Prior PMO implementations used AES-XTS-256 [15];
we assume the same in this work, but AES-XTS-128 could
also be used for performance reasons.

1241

Persistent Memory Objects on the Cheap ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

5.2.2 Integrity Verification. As mentioned in Section 2.5.5,
Integrity Verification (IV) of at-rest data is outside of the
scope of the CXL TEE specification. Therefore, the LPMO
system can have the kernel perform integrity verification at
detach or integrity verification at psync. The implications of
this were explored in prior work with PMOs [14]; the authors
of that work argued that IV at detach was valid so long as the
system could perform recovery in case of a crash or transient
fault. In Section 8, we evaluate the performance impact of
performing integrity verification in the CPU at detach time,
while keeping at-rest encryption within the TEE.

6 Implementation
6.1 LPMO Local Memory Implementation
To handle local memory, each page within a LPMO has an
associated structure containing the scatterlists for the pri-
mary and DRAM pages as well as additional flags indicating
whether the page has been predicted, faulted, or handled by
the kernel. When a PMO is attached for the first time, the
associated scatterlists are initialized and mapped to their re-
spective pages. When a page fault occurs, the kernel checks
whether the page has been handled in a previous predic-
tion, and if so, it maps the DRAM page into the appropriate
userspace virtual addresses, otherwise it performs the PMO
page fault handler routine and then the mapping. At psync,
the PMO renders the synchronized pages durable, as de-
scribed in the previous section. When a PMO is detached,
the data in DRAM are discarded. The first time the page is
either predicted or faulted, the kernel serves a page from
DRAM via __get_free_page() [8].
To handle prediction, the kernel calls the prediction han-

dler at page fault time. The prediction handler then copies
the next 𝑋 sequential pages (where 𝑋 is the stream depth) to
DRAM. If the atomic flag indicating that the page has already
been handled is set, the prediction handler skips that page,
otherwise it performs the copy to DRAM. A key challenge
with prediction is ensuring that the prediction and page fault
code do not cause data races by occurring at the same time.
To do this, the kernel locks the page via a mutex, and fu-
ture page faults on the page then wait until the decryption
completes, and then skips the decryption step (by calling
remap_pfn_range()).

6.2 CXL LPMO Implementation
To evaluate the performance of the LPMO design C and
CL, we use taskset to host the Optane memory of our PM
system on the opposite NUMA socket from the CPU, as per
Pond [25]. To evaluate the performance of LPMO design
CF, we mimic both DRAM and PM being hosted in CXL by
forcing all memory allocations in DRAM related to PMO
page faults to occur on the opposite socket. We do this by

calling in the kernel __alloc_pages_node() and force it to
always allocate on the opposite node from the node reported
by numa_mem_id(), by using the Get Free Page (GFP) flag
__GFP_THISNODE. Because our system only has two NUMA
nodes, this always results in the far NUMA node’s memory
being accessed.

7 Evaluation Methodology

Table 2: Configuration of the PM system used for eval-
uation.

Component Specifications
MB Supermicro X11DPi-NT
CPU 2×Intel Xeon Gold 6230 (20 cores)
Clock 2.1GHz (3.9GHz Boost)
Cache L1: 32KiB; L2: 1MiB; L3: 27.5MiB
DRAM 4 × 32GiB DDR4 @ 2666MHz
PM 4 × 128GiB Intel Optane DIMM
OS AlmaLinux 9.0; Linux 5.15.157

We evaluated LPMO using the system described in Ta-
ble 2. We use the following microbenchmarks taken from
prior PMO works [14], and originally from [12]: 2d Convo-
lution (2dConv), LU Decomposition (LU), Gaussian Elimi-
nation (Gauss), and Tiled Matrix Multiplication (TMM); we
also evaluate our work with Filebench [29] modified to sup-
port PMOs. In addition, we evaluate a modified version of
Lightning Memory-Mapped Database (LMDB) [4], which is
a key-value store that utilizes a B+Tree to store its data [16];
we utilize the Yahoo! Cloud Serving Benchmark (YCSB) [7]
workloads with LMDB to provide a large set of different,
non-regular access patterns.
Table 3 provides the configuration of the evaluated mi-

crobenchmarks, thewrite percentages for the Filebenchwork-
loads, and a description of the YCSB workloads.

8 Evaluation
In this section, we want to evaluate our LPMO implementa-
tion. We are interested in the answers to two questions: 1)
How much more performant is the LPMO design compared
to the original design? 2) How do our LPMO optimizations
improve the thread scalability and psync sensitivity of PMOs
compared to the original design?
In this section, 𝑂 refers to the PMO design from [14], 𝐷

refers to the non-CXL LPMO design with DRAM.𝐶 refers to
the CXL design without DRAM (see Figure 5a), 𝐿 refers to
the CXL design with local DRAM (see Figure 5b), 𝐹 refers to
the CXL design with far DRAM (see Figure 5c). Finally, the
numbers after 𝐷/𝐿/𝐹 refer to the stream depth when using
prediction (see Subsection 4.2).

1242

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Derrick Greenspan, Naveed Ul Mustafa, Jongouk Choi, Mark Heinrich, and Yan Solihin

Table 3: Evaluated Benchmarks.

Microbenchmarks Filebench YCSB LMDB
Benchmark Configuration Workload Write % Workload Description Workload Description
2dConv 256x1024 Fileserver 67% writes A Update Heavy D Read Latest
Gauss 18432 VarMail 50% writes B Read Mostly E Short Ranges
LU 6144 WebProxy 16% writes C Read Only F RMW Heavy
TMM 4096 16 WebServer 9% writes

Figure 6 depicts the legend for our microbenchmark re-
sults. P Other represents the time spent performing psync
that do not involve rendering the primary PMO copy crash
consistent (i.e., invalidating the cache lines to render the
shadow copy durable) while P Data represents the time
spent performing psync that involve copying the data from
the shadow copy to the primary. Detach is the time between
when the detach is invoked and when the system call returns;
since detach is a nonblocking system call, this is a very short
time period. PF Overhead represents all time spent on ser-
vicing page faults (i.e., the time spent rendering the page
available to the calling process). A Other is the time spent
performing all attach operations that are not being blocked
by detach, while A Stall is the time the Attach system call
spends waiting for the detach thread to complete (since de-
tach is nonblocking, but the detach operations must complete
before attach can occur). Finally, Compute is all of the other
time not captured by the other categories, primarily, this is
the time spent performing computation.

P TEE
P Other

P Data
Detach

PF Over
A TEE

A Other Compute
A Stall

Figure 6: Microbenchmark Legend.

We note that that enabling encryption on a CXL device
may have a slight performance cost that is not captured
by our simulated system. However, this performance cost
should be negligible: for example, the performance impact of
Intel Total Memory Encryption-Multi Key (TME-MK) [19] is
only ever at most 2.2%; we assume that CXL TEE encryption
should be similar. To emulate this latency, we apply a 1%
overhead to attach and psync when simulating LPMO on
CXL (we refer to this as A TEE and P TEE).

8.1 LPMO Performance
8.1.1 Microbenchmark Results. Figure 7 compares the exe-
cution times of various microbenchmarks and their average
for the state-of-the-art GPMO system (denoted as 𝑂 , for
origianal) from [14], versus our LPMO design with DRAM
shadow paging (denoted as 𝐷), and our design with stream
buffer prefetching with stream depths of 2, 4, and 8 (denoted
as 𝐷2, 𝐷4, and 𝐷8). The execution times are all normalized

to 𝑂 for each benchmark, and are broken into various com-
ponents.

0x
0.2x
0.4x
0.6x
0.8x

1x
1.2x
1.4x

O D
D
2

D
4

D
8 O D

D
2

D
4

D
8 O D

D
2

D
4

D
8 O D

D
2

D
4

D
8 O D

D
2

D
4

D
8

No Integrity Verification

2dConv Gauss LU TMM Avg

0x
0.2x
0.4x
0.6x
0.8x

1x
1.2x
1.4x

O D
D
2

D
4

D
8 O D

D
2

D
4

D
8 O D

D
2

D
4

D
8 O D

D
2

D
4

D
8 O D

D
2

D
4

D
8

Integrity Verification

2dConv Gauss LU TMM Avg

Figure 7: Execution time with and without DRAM pre-
diction.

When comparing 𝑂 vs. 𝐷 our scheme reduces execution
time by≈ 21% on average, due to a large reduction in the page
fault delay from much faster page faults because of DRAM’s
higher bandwidth and faster writes. Furthermore, it affects
various benchmarks differently. For example, 2d Convolu-
tion is unaffected because it is compute heavy (consistent
with prior works [14, 15]), while Gaussian Elimination is a
write heavy benchmark that incurs page faults often, so its
execution time decreases the most. Looking at page usage
predictions, it further reduces page fault times across all
benchmarks. Across various predictor stream depths, a shal-
low depth of 2 slightly outperforms other depths. Note that
while the impact of page prediction is small, the result from
Filebench, which uses sequential access patterns will show a
much bigger impact (to be covered later). Finally, it is likely
that if TMM had better accuracy (see Figure 3), its perfor-
mancewith predictionwould be higher. It is notable that even
with integrity verification, LPMOs are actually faster than
the LOaPP design without integrity verification (𝑂) (faster
by 7.8% with a depth of 8). The performance improvement
on average is 25% faster than the previous best-case design.

1243

Persistent Memory Objects on the Cheap ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

△ O, ◦ D, □ D2, × D4, ⊲ D8

1 2 4 8 16
Number of Threads

0
2
4
6
8

Sp
ee

du
p

(a) Gauss

1 2 4 8 16
Number of Threads

0
4
8

12
16

Sp
ee

du
p

(b) 2dConv

1 2 4 8 16
Number of Threads

0

2

4

6

Sp
ee

du
p

(c) LU

1 2 4 8 16
Number of Threads

0
2
4
6
8

Sp
ee

du
p

(d) TMM

Figure 8: Thread speedup.

Thread scalability. Figure 8 shows the thread-scalability
of the PMO system’s performance when using the best-case
design, synchronized once per second, with an attach/detach
size of 2. The results show that excessive numbers of writer
threads continue to slow the fabric down, but the effect is
blunted somewhat with 𝐷 , as the average performance im-
provement at 16 is 7.53× (compared to 6.47× with 𝑃). When
using 𝑆2 or 𝑆4, the speedup increases to 7.89×. With that
design, the benchmarks are on average 25% faster across all
thread sizes, while they are only 16% faster when using 𝐷 .
Therefore, prediction improves scaling based on the number
of threads. Figure 9 breaks down the results, normalized to 𝑃
(single thread) for 2d Convolution, Gauss, LU, and TMM. The
results show that the majority of the latency of PM (and to a
lesser extent, DRAM) are from the overhead of page faults.
Figure 9 breaks down the results into different stream

prediction sizes, from 2 to 8. It is clear that prediction greatly
reduces the time spent waiting for page faults to complete.

Psync sensitivity. Figure 10 evaluates the impact of psync
on the various prediction designs. This figure varies the num-
ber of psyncs between an attach/detach session from 1 to 8,
so that although there are an equal amount of attach/detach
calls in each run, psync occurs more or less often. The results
are normalized to 𝐷 with Integrity Verification at 8 psync
calls per attach/detach. What’s most interesting about these
results is that the impact of prediction is lessened. For ex-
ample, at 2× psyncs per attach/detach, the most performant
depth size has an improvement of 10% compared to 𝐷 , but
at 8× psyncs per attach/detach, the average speedup is only
2%. This implies that less frequent psync invocations will
see more benefit from prediction. This makes sense: while
page fault overhead is lessened by prediction, invocations
of psync increase the amount of time that psync consumes

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8

No Integrity Verification

1 2 4 8 16

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8

Integrity Verification

1 2 4 8 16

(a) Gaussian Elimination

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8

No Integrity Verification

1 2 4 8 16

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8

Integrity Verification

1 2 4 8 16

(b) LU Decomposition

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8

No Integrity Verification

1 2 4 8 16

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8

Integrity Verification

1 2 4 8 16

(c) Tiled Matrix Multiplication

Figure 9: Thread scalability by stream prediction size.

as a total portion of the execution time. Although psync
only persists those pages that are dirtied, in many cases, a
large number of pages are dirtied between psync invocations.
Also, using 𝐷 with TMM produces a counter-intuitive result:
there is worse performance at 8× psync invocation for 𝐷
compared to 𝑂 . This is because 𝑂 encrypts the page from
the shadow into the primary, while 𝐷 must both encrypt the
page from the DRAM copy into the shadow and then copy
from the shadow into the primary. As expected, psync is
broadly slower with 𝐷 compared to 𝑂 alone. A programmer
using 𝐷 will therefore want to be mindful of the fact that
psync is a more expensive operation and avoid invoking it
excessively.

8.1.2 Filebench Results. Figure 11a compares the I/O band-
width of different Filebench workloads, higher is better. The
results are normalized to 𝑂 and reported for 8 threads with
synchronization performed after every write/append oper-
ation. The figure shows that 𝐷 is 1.19× faster than 𝑂 , but
increases to 1.81× faster when page prediction is used. This
result contrasts to the microbenchmarks’ where the impact

1244

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Derrick Greenspan, Naveed Ul Mustafa, Jongouk Choi, Mark Heinrich, and Yan Solihin

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8

No Integrity Verification

8:1 4:1 2:1 1:1

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8

Integrity Verification

8:1 4:1 2:1 1:1

(a) Gaussian Elimination

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8

No Integrity Verification

8:1 4:1 2:1 1:1

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x
O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8

Integrity Verification

8:1 4:1 2:1 1:1

(b) LU Decomposition

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8

No Integrity Verification

8:1 4:1 2:1 1:1

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8 O D
D
2
D
4
D
8

Integrity Verification

8:1 4:1 2:1 1:1

(c) Tiled Matrix Multiplication

Figure 10: Psync sensitivity by prediction depth.

of prediction on performance is smaller. With Integrity Verifi-
cation, on average, 𝐷 does not improve performance enough
to make it faster than 𝑂 , but prediction changes that: with
prediction, it’s 1.37× faster on average compared to the orig-
inal PM only design, meaning that across all the workloads,
the performance penalties of including Integrity Verification
are completely eliminated. In contrast to the microbench-
marks, the Filebench workloads have nearly 100% coverage,
timeliness, and accuracy due to their workloads simulating
real I/O access patterns, which are usually sequential [24].
Our PMO stream buffers perform well with these workloads.

8.1.3 LMDB YCSB Workloads. Figure 11b depicts the band-
width of various YCSB workloads using an LMDB backend.
As with the Filebench workloads, a higher bandwidth is
better, and the results are normalized to 𝑂 . The results are
reported for 8 threads, and to represent a realistic persist ca-
dence for key-value stores and read workloads, we call psync
after every 10000 operations, and after 4 psync invocations,
we invoke a detach and attach call.

In contrast to the Filebench workloads, most of YCSB
workloads do not benefit from the stream predictor. Without

O, D, D2, D4

0x

0.5x

1x

1.5x

2x

FS WS WP VM AVG

No Integrity Verification

0x

0.5x

1x

1.5x

2x

FS WS WP VM AVG

Integrity Verification

(a) Normalized Filebench bandwidth.

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

A B C D E F AVG
YCSB Workload

No Integrity Verification

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

A B C D E F AVG
YCSB Workload

Integrity Verification

(b) Normalized YCSB LMDB bandwidth.

Figure 11: Bandwidth for PM (𝑂), DRAM (𝐷), and Pre-
diction (𝐷2, 𝐷4).

integrity verification, the predictor is about 1% slower than
just using DRAM alone on average, and approximately 1.6%
faster than the original design. With integrity verification,
the predictor is ≈ 6% slower on average, and is negligibly
faster (< 1%) than the original design.
However, Workloads 𝐶 and 𝐸, when using Integrity Veri-

fication, present an exception to this. For these workloads,
which are described as "Read Only" and "Short Ranges" re-
spectively, the predictor is beneficial. For𝐶 , this is is because
psync has nothing to do and there are no pages to have their
checksum updated at detach time. For 𝐸, this is because the
items accessed within the key-value store are nearby each
other and so the pages the stream predictor decrypts ahead
of time are almost always the ones needed by the workload.
This is also why the predictor is faster at a depth of four than
two. As the performance of the stream predictor is workload
dependent, the system can disable the predictor once the
miss-rate exceeds a specified value. We leave for future work
the possibility of using a more complicated predictor.

8.2 CXL Performance
In this section, we are interested in the implications of using
CXL with our LPMO abstraction. We utilize our LPMO ab-
straction and compare it to the performance of the GPMO
system.

8.2.1 Software Encryption. To illustrate the problem of software-
based encryption with CXL, Figure 12 compares the total
execution time at 8 threads of LPMO with software encryp-
tion (and no IV) to the execution times of LPMOs with CXL

1245

Persistent Memory Objects on the Cheap ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

0x

0.2x

0.4x

0.6x

0.8x

1x

2d Gauss LU TMM Avg

(a) Microbenchmarks

0x

0.2x

0.4x

0.6x

0.8x

1x

FS VM WS WP Avg

(b) Filebench

Figure 12: Speedup (higher is better) of software en-
cryption compared to CXL TEE.

TEE. As can be seen, LPMO devices utilizing software en-
cryption is up to 56.5% slower (with WP) than without.

8.2.2 Microbenchmark Evaluations. In this subsection, we
evaluate all of the microbenchmarks described earlier. First,
we break down the execution of each of our microbench-
marks based on our memory configuration. The results are
normalized to the original (𝑂) GPMO design without in-
tegrity verification or CXL.

Gaussian Elimination. Figure 13a depicts the execution
time of the Gaussian Elimination benchmark. This bench-
mark suffers from the added latency of CXL; it’s nearly twice
as slow as the original system. However, whenwe add DRAM
to CXL, the trend reverses and the overall execution time is
approximately 40% lower compared to the original design,
because the page fault overhead is reduced (since only the
first fault must access PM). As observed earlier, prediction
does not improve the performance of the benchmark much,
but our CXL design is nearly twice as slow as the local design,
assuming we have DRAM. This is likely because Gaussian
Elimination is a write heavy benchmark with a high number
of page faults from shadow page allocations. The trend is
the same when using Integrity Verification.

2d Convolution. Figure 13b depicts the execution time of
the 2d Convolution benchmark. This benchmark is highly
CPU bound [14] and so the overhead is relatively small.
Nonetheless, there is very interesting behavior here. Adding
integrity verification increases the execution time of the
original PMO design by 23.5%, while it increases the execu-
tion time of the LPMO design with no DRAM by 20%. On
the other hand, the LPMO design with EMFs are 3% faster,
despite the added latency of CXL!

LUDecomposition. Figure 13c depicts the execution time of
the LU Decomposition benchmark. In these benchmarks, no
integrity verification is significantly faster. Like with the ear-
lier benchmarks, we see that the LPMO design is slower than
the original design, but adding a local DRAM cache makes it
faster. When adding Integrity Verification, our CXL designs
are slower than the original design, but with prediction, they
are slightly faster depending on the depth. The page fault

overhead (from faulting unnecessary pages) is very high for
our CXL system at a depth of 8, which is surprising. It is
likely because of the added latency of CXL NUMA nodes
and the fact that LU is heavily memory bound.

Tiled Matrix Multiplication. Figure 13d depicts the execu-
tion time of the Tiled Matrix Multiplication benchmark. As
before, the predictor does not change the performance much.

8.2.3 LMDB YCSBWorkloads. Finally, we evaluate the same
LMDB YCSB workloads we described in Section 8.1.3. Fig-
ure 14 normalizes our results to the original design both
with and without integrity verification. The most interest-
ing observation here is that despite the additional latency
of CXL, the lack of software encryption/decryption means
that the original design is almost always slower than even
a CXL design without DRAM Caching (𝐶). This means that
for key-value stores, using our CXL Design improves perfor-
mance dramatically compared to the original GPMO design.
This behavior is true whether or not Integrity Verification is
enabled.

The second critical observation is that certain YCSB work-
loads (𝐴 and 𝐷) heavily punish the predictor when using
integrity verification; Workload 𝐴 is "Update Heavy", and
Workload 𝐷 are "Read Latest" workloads. It’s important to
note that Workload 𝐷 does perform insertions, and the in-
sertions are hashed rather than ordered purely by time (i.e.,
the "latest" items are not sequential, but are randomly placed
within the B+Tree). Since the checksum is updated on detach
on those pages that are marked as dirty, but the checksum is
verified at page fault (which in our design, is verified ahead of
time), the system’s high misprediction rate of approximately
15 − 25% leads to unnecessary integrity verification checks.

9 Related Work
9.1 DRAM Caching for PM devices
HUNTER [34] proposes moving the metadata of PM File Sys-
tems to DRAM, to alleviate performance bottlenecks caused
by updating PMmetadata directly in the PM. As PMOs reduce
metadata as much as possible by design, this optimization is
not needed. HUNTER also utilizes dynamic arrays to perform
fast indexing, but this optimization is again for metadata up-
dates. Further, HUNTER’s assurances of crash-consistency
only apply to these metadata updates. On the other hand, our
design, following the PMO approach to crash consistency,
ensures crash-consistency for all data within the PM.

One possibility to avoid the requirement to perform psync
to ensure crash-consistency is to utilize battery-backed RAM.
In its presence, LPMO could abrogate performing psync en-
tirely. However, Intel processors no longer support eADR [18]
because of the discontinuation of Optane, making battery-
backed RAM difficult to obtain.

1246

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Derrick Greenspan, Naveed Ul Mustafa, Jongouk Choi, Mark Heinrich, and Yan Solihin

0x

0.5x

1x

1.5x

2x

2.5x

C O F
F
2
F
4
F
8 L
L
2
L
4
L
8 D
D
2
D
4
D
8

No Integrity Verification

0x

0.5x

1x

1.5x

2x

2.5x

C O F

F
2

F
4

F
8 L

L
2

L
4

L
8

Integrity Verification

(a) Gaussian Elimination

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

C O F
F
2
F
4
F
8 L
L
2
L
4
L
8

D
2
D
4
D
8

No Integrity Verification

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

1.4x

C O F
F
2
F
4
F
8 L
L
2
L
4
L
8

D
2
D
4
D
8

Integrity Verification

(b) 2D Convolution

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

1.4x

1.6x

1.8x

C O F
F
2
F
4
F
8 L
L
2
L
4
L
8 D
D
2
D
4
D
8

No Integrity Verification

0x

0.5x

1x

1.5x

2x

2.5x

3x

C O F
F
2
F
4
F
8 L
L
2
L
4
L
8 D
D
2
D
4
D
8

Integrity Verification

(c) LU Decomposition

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

1.4x

C O F
F
2
F
4
F
8 L
L
2
L
4
L
8 D
D
2
D
4
D
8

No Integrity Verification

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

1.4x

1.6x

1.8x

C O F
F
2
F
4
F
8 L
L
2
L
4
L
8 D
D
2
D
4
D
8

Integrity Verification

(d) Tiled Matrix Multiplication

Figure 13: CXL Microbenchmark Evaluation

L, F, C, L2, L4, F2, F4, O

0x
0.2x
0.4x
0.6x
0.8x
1x

1.2x
1.4x

A B C D E F AVG
YCSB Workload

No Integrity Verification

0x
0.2x
0.4x
0.6x
0.8x
1x

1.2x
1.4x

A B C D E F AVG
YCSB Workload

Integrity Verification

Figure 14: Normalized YCSB LMDB bandwidth.

9.2 CXL-attached PM devices
Prior work has discussed the implications of CXL-attached
PM devices. For example [10] argues that the existence of
CXL PM devices is not required for persistent memory re-
search, because hybrid solutions that combine flash, volatile
memory, and battery-backed buffers can enable persistent-
memory systems. Another work, Memstrata [45] propose
memory tiering modes for CXL devices and mentions how
Optane PM can be configured to neglect the properties of
crash consistency through the use of Memory Mode. Neither
of these works, however, directly address byte-addressable
persistent memory that treats both persistence and byte-
addressability in equal importance; to the best of our knowl-
edge, our design is the first to utilize CXL PM persistence.

10 Conclusion
We introduced LPMO, a lightweight PMO solution that en-
ables software-based DRAM caching and predictive decryp-
tion, with the goal of further accelerating their performance
without impacting security or reliability. Results show that
compared to the prior most-performant design, these opti-
mizations have the potential to improve performance by up
to 1.25× (for DRAM caching alone) and 1.81× (with predic-
tive decryption), depending on the workload. The perfor-
mance impact of Integrity Verification is also lessened, and
in some cases completely eliminated, when using DRAM and
predictive encryption together.
We also demonstrated that our LPMO abstraction can

apply to CXL-attached PM systems with a reconfigurable
memory hierarchy, and we discussed the implications of such
a design. We evaluated the same benchmarks and demon-
strated that despite the added latency of CXL, reconfiguring
the CXL architecture to support different memory config-
urations allows CXL attached devices using the LPMO ab-
straction to have performance comparable to, and sometimes
faster than, the prior most-performant PMO design.

Acknowledgments
This work was funded in part by multiple grants, includ-
ing the National Science Foundation grants CNS-2314680
and CNS-2106629, as well as the Office of Naval Research
grant N00014-23-1-2136. Furthermore, we greatly appreci-
ate the invaluable feedback from the anonymous reviewers
and shepherd. We also greatly appreciate the assistance of
the other members of the CompArch and ARPERS research
laboratories at the University of Central Florida.

1247

Persistent Memory Objects on the Cheap ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

References
[1] David Boles, Daniel Waddington, and David A Roberts. 2023. CXL-

enabled enhanced memory functions. IEEE Micro 43, 2 (2023), 58–65.
[2] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman Ahmed,

Zhongshu Gu, Hani Jamjoom, Hubertus Franke, and James Bottomley.
2024. Intel TDX Demystified: A Top-Down Approach. ACM Comput.
Surv. 56, 9, Article 238 (April 2024), 33 pages. doi:10.1145/3652597

[3] Kwanghoon Choi, Igjae Kim, Sunho Lee, and Jaehyuk Huh. 2025.
ShieldCXL: A Practical Obliviousness Support with Sealed CXL Mem-
ory. ACM Trans. Archit. Code Optim. 22, 1, Article 13 (March 2025),
25 pages. doi:10.1145/3703354

[4] Howard Chu. 2011-2015. Lightning Memory-Mapped Database
(LMDB). https://www.symas.com/lmdb.

[5] Kernel Development Community. 2023. Block Cipher Al-
gorithm Definitions. https://www.kernel.org/doc/html/
v5.14/crypto/api-skcipher.html#symmetric-key-cipher-
api https://www.kernel.org/doc/html/v5.14/crypto/api-
skcipher.html#symmetric-key-cipher-api.

[6] COMPUTE EXPRESS LINK CONSORTIUM, INC. 2023. Compute Ex-
press Link 3.1 Specification. COMPUTE EXPRESS LINK CONSORTIUM,
INC. Revision 3.1.

[7] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing
(Indianapolis, Indiana, USA) (SoCC ’10). Association for Computing
Machinery, New York, NY, USA, 143–154. doi:10.1145/1807128.1807152

[8] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. 2005.
Linux device drivers. " O’Reilly Media, Inc.", Sebastopol, CA, USA.

[9] Debendra Das Sharma, Robert Blankenship, and Daniel Berger. 2024.
An Introduction to the Compute Express Link (CXL) Interconnect.
Comput. Surveys 56, 11 (2024), 1–37.

[10] Peter Desnoyers, Ian Adams, Tyler Estro, Anshul Gandhi, Geoff Kuen-
ning, Mike Mesnier, Carl Waldspurger, Avani Wildani, and Erez Zadok.
2023. Persistent Memory Research in the Post-Optane Era. In Pro-
ceedings of the 1st Workshop on Disruptive Memory Systems (Koblenz,
Germany) (DIMES ’23). Association for Computing Machinery, New
York, NY, USA, 23–30. doi:10.1145/3609308.3625268

[11] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David Culler,
Zhiyi Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey, Danijela
Mijailovic, Brian Morris, Chiranjit Mukherjee, Jingliang Ren, Greg
Thelen, Paul Turner, Carlos Villavieja, Parthasarathy Ranganathan,
and Amin Vahdat. 2023. Towards an Adaptable Systems Architecture
for Memory Tiering at Warehouse-Scale. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (Vancouver, BC, Canada) (ASPLOS
2023, Vol. 3). Association for Computing Machinery, New York, NY,
USA, 727–741. doi:10.1145/3582016.3582031

[12] Hussein Elnawawy,MohammadAlshboul, James Tuck, and Yan Solihin.
2017. Efficient Checkpointing of Loop-Based Codes for Non-volatile
Main Memory. In 2017 26th International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT). IEEE, Portland, Oregon,
USA, 318–329. doi:10.1109/PACT.2017.58

[13] Donghyun Gouk, Miryeong Kwon, Hanyeoreum Bae, Sangwon Lee,
and Myoungsoo Jung. 2023. Memory pooling with cxl. IEEE Micro 43,
2 (2023), 48–57.

[14] Derrick Greenspan, Naveed Ul Mustafa, Andres Delgado, Connor
Bramham, Christopher Prats, Samu Wallace, Mark Heinrich, and Yan
Solihin. 2024. LOaPP: Improving the Performance of Persistent Mem-
ory Objects via Low-Overhead at-Rest PMO Protection. In 2024 In-
ternational Symposium on Secure and Private Execution Environment
Design (SEED). IEEE, IEEE, Orlando, Florida, USA, 131–142.

[15] Derrick Greenspan, Naveed Ul Mustafa, Zoran Kolega, Mark Heinrich,
and Yan Solihin. 2022. Improving the Security and Programmability of
Persistent Memory Objects. In 2022 IEEE International Symposium on
Secure and Private Execution Environment Design (SEED). IEEE, Storrs,
USA, 157–168. doi:10.1109/SEED55351.2022.00021

[16] Gavin Henry. 2019. Howard chu on lightning memory-mapped data-
base. Ieee Software 36, 06 (2019), 83–87.

[17] Michael Henson and Stephen Taylor. 2014. Memory encryption: A
survey of existing techniques. ACM Computing Surveys (CSUR) 46, 4
(2014), 1–26. Publisher: ACM New York, NY, USA.

[18] Intel. 2021. eADR: New Opportunities for Persistent Memory
Applications. https://www.intel.com/content/www/us/en/developer/
articles/technical/eadr-new-opportunities-for-persistent-memory-
applications.html

[19] Intel. 2023. Intel® Total Memory Encryption - Multi-Key - 009 -
ID:655258 | 12th Generation Intel® Core™ Processors.

[20] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
samanMemaripour, Yun Joon Soh, ZixuanWang, Yi Xu, Subramanya R.
Dulloor, Jishen Zhao, and Steven Swanson. 2019. Basic Performance
Measurements of the Intel Optane DC Persistent Memory Module.
arXiv:1903.05714 [cs.DC] https://arxiv.org/abs/1903.05714

[21] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. 2019. SplitFS: reducing soft-
ware overhead in file systems for persistent memory. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles (Huntsville,
Ontario, Canada) (SOSP ’19). Association for Computing Machinery,
New York, NY, USA, 494–508. doi:10.1145/3341301.3359631

[22] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD memory
encryption. White paper 13 (2016), 12.

[23] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. 2009. seL4: formal verification of an OS kernel. In Proceed-
ings of the ACM SIGOPS 22nd Symposium on Operating Systems Princi-
ples (Big Sky, Montana, USA) (SOSP ’09). Association for Computing
Machinery, New York, NY, USA, 207–220. doi:10.1145/1629575.1629596

[24] Chuanpeng Li, Kai Shen, and Athanasios E. Papathanasiou. 2007. Com-
petitive prefetching for concurrent sequential I/O. In Proceedings of
the 2nd ACM SIGOPS/EuroSys European Conference on Computer Sys-
tems 2007 (Lisbon, Portugal) (EuroSys ’07). Association for Computing
Machinery, New York, NY, USA, 189–202. doi:10.1145/1272996.1273017

[25] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-
doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, et al. 2023. Pond: Cxl-based memory pooling sys-
tems for cloud platforms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2. ACM New York, New York, USA, Van-
couver, British Columbia, Canada, 574–587.

[26] Jubayer Mahmod and Matthew Hicks. 2022. Sram has no chill: ex-
ploiting power domain separation to steal on-chip secrets. In Proceed-
ings of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, Lausanne,
Switzerland, 1043–1055.

[27] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit Kanaujia, and Prakash Chauhan. 2023. TPP: Transparent
Page Placement for CXL-Enabled Tiered-Memory. In Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3 (Vancouver,
BC, Canada) (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 742–755. doi:10.1145/3582016.3582063

1248

https://doi.org/10.1145/3652597
https://doi.org/10.1145/3703354
https://www.kernel.org/doc/html/v5.14/crypto/api-skcipher.html#symmetric-key-cipher-api
https://www.kernel.org/doc/html/v5.14/crypto/api-skcipher.html#symmetric-key-cipher-api
https://www.kernel.org/doc/html/v5.14/crypto/api-skcipher.html#symmetric-key-cipher-api
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3609308.3625268
https://doi.org/10.1145/3582016.3582031
https://doi.org/10.1109/PACT.2017.58
https://doi.org/10.1109/SEED55351.2022.00021
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://arxiv.org/abs/1903.05714
https://arxiv.org/abs/1903.05714
https://doi.org/10.1145/3341301.3359631
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1272996.1273017
https://doi.org/10.1145/3582016.3582063

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Derrick Greenspan, Naveed Ul Mustafa, Jongouk Choi, Mark Heinrich, and Yan Solihin

[28] Tony Mason, Thaleia Dimitra Doudali, Margo Seltzer, and Ada
Gavrilovska. 2020. Unexpected performance of Intel® Optane™ DC
persistent memory. IEEE Computer Architecture Letters 19, 1 (2020),
55–58.

[29] Richard McDougall and Jim Mauro. 2005. FileBench Tuto-
rial, In 2024 NFS Conference. URL: http://www. nfsv4bat.
org/Documents/nasconf/2004/filebench. pdf, 56.

[30] Sebasian Moss. 2022. Intel kills off Optane Memory, writes off $559
million inventory. https://www.datacenterdynamics.com/en/news/
intel-kills-off-optane-memory-writes-off-559-million-inventory/.

[31] Naveed Ul Mustafa and Yan Solihin. 2023. Persistent Memory Security
Threats to Interprocess Isolation. IEEE Micro 43, 5 (2023), 16–23.

[32] Naveed Ul Mustafa, Yuanchao Xu, Xipeng Shen, and Yan Solihin. 2021.
Seeds of SEED: New Security Challenges for PersistentMemory. In 2021
International Symposium on Secure and Private Execution Environment
Design (SEED). IEEE, IEEE, Virtual, 83–88.

[33] S. Palacharla and R. E. Kessler. 1994. Evaluating stream buffers as a
secondary cache replacement. In Proceedings of the 21st Annual Inter-
national Symposium on Computer Architecture (Chicago, Illinois, USA)
(ISCA ’94). IEEE Computer Society Press, Washington, DC, USA, 24–33.
doi:10.1145/191995.192014

[34] Yanqi Pan, Yifeng Zhang, Wen Xia, Xiangyu Zou, and Cai Deng. 2025.
HUNTER: Releasing Persistent Memory Write Performance with A
Novel PM-DRAM Collaboration Architecture. In Proceedings of the
60th Annual ACM/IEEE Design Automation Conference (San Francisco,
California, United States) (DAC ’23). IEEE Press, New York, NY, USA,
1–6. doi:10.1109/DAC56929.2023.10247940

[35] P Roberts. 2003. MIT: Discarded hard drives yield private
info. https://www.computerworld.com/article/1334164/mit-discarded-
hard-drives-yield-private-info.html

[36] Brian Rogers, Yan Solihin, and Milos Prvulovic. 2005. Memory prede-
cryption: hiding the latency overhead of memory encryption. ACM
SIGARCH Computer Architecture News 33, 1 (2005), 27–33.

[37] Yan Solihin. 2019. Persistent memory: Abstractions, abstractions, and
abstractions. IEEE Micro 39, 1 (2019), 65–66.

[38] Yan Solihin, Jaejin Lee, and Josep Torrellas. 2002. Using a user-level
memory thread for correlation prefetching. ACM SIGARCH Computer
Architecture News 30, 2 (2002), 171–182.

[39] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan
Huang, Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, Ren
Wang, Jung Ho Ahn, Tianyin Xu, and Nam Sung Kim. 2023. De-
mystifying CXL Memory with Genuine CXL-Ready Systems and De-
vices. In Proceedings of the 56th Annual IEEE/ACM International Sym-
posium on Microarchitecture (Toronto, ON, Canada) (MICRO ’23). As-
sociation for Computing Machinery, New York, NY, USA, 105–121.
doi:10.1145/3613424.3614256

[40] Jian Xu, Lu Zhang, AmirsamanMemaripour, Akshatha Gangadharaiah,
Amit Borase, Tamires Brito Da Silva, Steven Swanson, andAndy Rudoff.
2017. NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory File
System. In Proceedings of the 26th Symposium on Operating Systems
Principles (Shanghai, China) (SOSP ’17). Association for Computing
Machinery, New York, NY, USA, 478–496. doi:10.1145/3132747.3132761

[41] Yuanchao Xu, Yan Solihin, and Xipeng Shen. 2020. MERR: Improving
Security of Persistent Memory Objects via Efficient Memory Expo-
sure Reduction and Randomization. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20).
Association for Computing Machinery, New York, NY, USA, 987–1000.
doi:10.1145/3373376.3378492

[42] Yuanchao Xu, Chencheng Ye, Xipeng Shen, and Yan Solihin. 2022.
Temporal Exposure Reduction Protection for Persistent Memory. In
2022 IEEE International Symposium on High-Performance Computer

Architecture (HPCA). IEEE, IEEE, Seoul, South Korea, 908–924.
[43] Yuanchao Xu, ChenCheng Ye, Yan Solihin, and Xipeng Shen. 2020.

Hardware-Based Domain Virtualization for Intra-Process Isolation of
Persistent Memory Objects. In 2020 ACM/IEEE 47th Annual Interna-
tional Symposium on Computer Architecture (ISCA). ACM,IEEE, Virtual,
680–692. doi:10.1109/ISCA45697.2020.00062

[44] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019.
Nimble Page Management for Tiered Memory Systems. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (Providence, RI,
USA) (ASPLOS ’19). Association for Computing Machinery, New York,
NY, USA, 331–345. doi:10.1145/3297858.3304024

[45] Yuhong Zhong, Daniel S. Berger, Carl Waldspurger, Ryan Wee, Ishwar
Agarwal, Rajat Agarwal, Frank Hady, Karthik Kumar, Mark D. Hill,
Mosharaf Chowdhury, and Asaf Cidon. 2024. Managing Memory Tiers
with CXL in Virtualized Environments. In 18th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 24). USENIX Asso-
ciation, Santa Clara, CA, 37–56. https://www.usenix.org/conference/
osdi24/presentation/zhong-yuhong

1249

https://www.datacenterdynamics.com/en/news/intel-kills-off-optane-memory-writes-off-559-million-inventory/
https://www.datacenterdynamics.com/en/news/intel-kills-off-optane-memory-writes-off-559-million-inventory/
https://doi.org/10.1145/191995.192014
https://doi.org/10.1109/DAC56929.2023.10247940
https://www.computerworld.com/article/1334164/mit-discarded-hard-drives-yield-private-info.html
https://www.computerworld.com/article/1334164/mit-discarded-hard-drives-yield-private-info.html
https://doi.org/10.1145/3613424.3614256
https://doi.org/10.1145/3132747.3132761
https://doi.org/10.1145/3373376.3378492
https://doi.org/10.1109/ISCA45697.2020.00062
https://doi.org/10.1145/3297858.3304024
https://www.usenix.org/conference/osdi24/presentation/zhong-yuhong
https://www.usenix.org/conference/osdi24/presentation/zhong-yuhong

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Persistent Memory Objects
	2.2 Crash Consistency
	2.3 Per-page encryption
	2.4 Cache and Page Prediction
	2.5 Compute Express Link Memory

	3 Threat and Trust Model
	4 LPMO Design
	4.1 DRAM Shadow Paging
	4.2 Page Access Prediction
	4.3 Page Access Predictor Evaluation

	5 LPMO with CXL
	5.1 Reconfigurable Memory Hierarchy
	5.2 Hardware Support for Memory Security

	6 Implementation
	6.1 LPMO Local Memory Implementation
	6.2 CXL LPMO Implementation

	7 Evaluation Methodology
	8 Evaluation
	8.1 LPMO Performance
	8.2 CXL Performance

	9 Related Work
	9.1 DRAM Caching for PM devices
	9.2 CXL-attached PM devices

	10 Conclusion
	Acknowledgments
	References

