
Seeds of SEED: New Security Challenges for
Persistent Memory

Naveed Ul Mustafa
Department of Computer Science

University of Central Florida
Orlando, FL, USA

0000-0002-0650-3464

Yuanchao Xu, Xipeng Shen
Department of Computer Science

North Carolina State University
Raleigh, NC, USA

0000-0003-4165-9138, 0000-0003-3599-8010

Yan Solihin
Department of Computer Science

University of Central Florida
Orlando, FL, USA

0000-0002-8863-941X

Abstract—Persistent Memeory Object (PMO) is a general
system abstraction for holding persistent data in persistent main
memory, managed by an operating system. PMO programming
model breaks inter-process isolation as it results in sharing of
persistent data between two processes as they alternatively access
the same PMO. The uncoordinated data-access opens a new
avenue for cross-run and cross-process security attacks.

In this paper, we discuss threat vulnerabilities that are either
new or increased in intensity under PMO programming model.
We also discuss security implications of using the PMO, high-
lighting sample PMO-based attacks and potential strategies to
defend against them.

Index Terms—Persistent memory objects, Security attacks,
PMO vulnerability

I. INTRODUCTION

The release of DIMM-compatible Intel Optane DC Persis-
tent Memory [1] in 2018 marked the beginning of the incor-
poration of Persistent Memory (PM) into main memory. Com-
pared to DRAM, PM provides higher density, better scaling
prospect, non-volatility, and lower static power consumption,
while providing byte addressability and access latencies that
are not much slower. Consequently, PM blurs the boundary of
memory and storage.

There are different ways PM can be viewed as it is inte-
grated into the computer system: as fast medium for hosting
the file system or hosting memory-mapped files, as a large-
capacity memory alternative to DRAM, or as persistent main
memory. While file systems can benefit from PM (e.g., PMFS
[5], BPFS [6], and NOVA [7]), the file system software over-
heads, or the need to reconcile virtual memory and file system
semantics present formidable challenges. In this paper, we
limit our discussion to the persistent main memory case, where
PM is used to host persistent data structures encapsulated in
objects that are managed by the OS. These persistent memory
objects (PMO) were proposed initially in [4].

The security threats affecting PM fabric has been explored,
for example, PM encryption was proposed to address data
remanence [8], [12]–[14], and mechanisms to prevent early
wearout from repeated writes by malicious programs were
proposed [15]. However, said studies address security threats

This work is supported in part by ONR through award N00014-20-1-2750
and NSF through award CNS-1717425.

from the use of PM as main memory fabric, but do not address
the PMO model, i.e. using PM as system objects hosting
persistent data. Only two recent studies (e.g., [4], [16]) look
into reducing exposure window of PMOs and PMO layout
randomization. However, they did not analyze what threats
were possible and under what situations the protection could
be effective.

This paper discusses threat models and vulnerabilities that
are either new or increased in intensity from the use of PMOs.
For example, we discuss that the use of PMO may break
inter-process isolation guarantee that is central to OS security
protection through address spaces. It discusses security impli-
cations of using the PMO, presents how threats are affected
by the underlying assumptions and the programming model. It
highlights sample attacks made possible by the vulnerabilities
and discusses potential strategies to defend against them.

The rest of the paper is organized as follows. Section II
provides background on Persistent Memory Objects (PMOs):
programming model and differences from those of files or
DRAM. Section III discusses related work and Section IV
presents the assumed threat models. Section V presents a dis-
cussion on merits and demerits of different pointer types from
PMO security perspective. Section VI presents sample PMO-
based control and non-control data attacks, while Section VII
qualitatively analyzes defense mechanisms and briefly hints on
strategies to detect attacks. Section VIII concludes the paper.

II. BACKGROUND

A. Persistent Memory Object (PMO)

PMO is a general system abstraction for holding persistent
data managed by operating system (OS) [4]. PMO data is
not backed by files, and may permanently reside in physical
memory. Data in a PMO is held in regular data structures,
hence may contain complex data types and pointers, and is
accessible directly with load and store instructions, unlike
files1 The OS may provide file system-like namespace and
permission settings to PMOs so that data in a PMO can be
reusable across process lifetimes and basic access control can
be provided.

1While some files may contain serialized objects and hence pointers,
accesses require system calls and serialization/deserialization.

83

2021 International Symposium on Secure and Private Execution Environment Design (SEED)

978-1-6654-2025-9/21/$31.00 ©2021 IEEE
DOI 10.1109/SEED51797.2021.00020

20
21

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
Se

cu
re

 a
nd

 P
riv

at
e

Ex
ec

ut
io

n
En

vi
ro

nm
en

t D
es

ig
n

(S
EE

D
) |

 9
78

-1
-6

65
4-

20
25

-9
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SE

ED
51

79
7.

20
21

.0
00

20

Authorized licensed use limited to: University of Central Florida. Downloaded on January 14,2024 at 17:21:05 UTC from IEEE Xplore. Restrictions apply.

Two key primitives for a PMO are attach() and detach()
system calls [4]. As PMO already resides in physical memory,
and its data is already in data structure form, for a process to
work on PMO data, it calls attach() system call to map the
PMO into its address space. Once attached, the process can
access it with regular loads/stores, without involving the OS.
Likewise, detach() unmaps the PMO from the address space,
making it inaccessible. After detached, any laod/store to the
address region where the PMO used to map result in protection
faults.

Just like a file, a PMO may outlast process lifetime, it is
conceivable that it will be attached and accessed by multiple
processes at different times (or simultaneously read). Simi-
larly, a single process may attach and access multiple PMOs
simultaneously. When multiple processes alternatingly access
a file, a process may make changes to the file that affect other
processes. The same can occur to a PMO accessed by multiple
processes. However, a PMO is mapped directly to the address
space, hence a change to PMO data by one process directly
affects the address space of another process.

B. Security Implications of PM vs DRAM data

There has been a lack of systematic studies on the security
implication of PM-resident data in active use. A plausible
reason is the perception that existing memory protection
designed for DRAM is enough for PM; the whitepaper [17]
published by the Storage Networking Industry Association
(SNIA) is often taken as the evidence. The whitepaper [17]
stated that “memory protection practices for DRAM apply to
persistent memory”. While the statement is true, it should not
be interpreted as existing memory protection is sufficient for
PM.

In fact, PM poses some principled differences for protection
in comparison to DRAM in several ways:

1) PMO corruption is persistent. Since PMO keeps persis-
tent data, any data corruption or bugs (dangling pointers,
memory leak, etc.) are also persistent.

2) Recovering from data corruption is challenging. The
effect of corrupted volatile data structures on process
behavior can be erased by process relaunch. In contrast,
process relaunch does not lead to persistent data recovery,
and may cause recurrence of incorrect process behavior.

3) PMO corruption is transmissible between runs. Due
to PMO data being long lived, its content and structure
are reused across runs of the same application, and even
across different applications. Data corruption caused by
one run directly affects the security of other runs or even
unrelated applications.

4) Attackers can figure out the target locations incre-
mentally. Unlike DRAM data, the attacker can slowly
and incrementally figure out the target locations of data
to corrupt over a long period of time across different runs.

Overall, the cross-run/process security vulnerabilities are
new due to the PMO model. When a PMO can be shared
by multiple processes, fundamentally this breaks the inter-
process isolation that is the staple security feature of address

space isolation of the OS. Hence, memory protection practices
common for DRAM require substantial boosting for PMOs.

C. Security Implications of PM vs Files

PMOs are expected to hold data structures, making them
pointer rich. On the contrary, files are normally used to
hold data (but can also be used to hold data structures,
though less common). Since a file contains no pointers, cross-
process attacks are much harder to carry out. Pointers are
attractive targets for attacks, which makes PM protection more
important.

Also, data placed in a PMO-resident data structure is more
tightly coupled with execution flow of a process as it can be
accessed with regular load/store instructions. Even non-pointer
data in PMOs is more likely to be directly used to determine
program control flow, making them attractive attack targets.
In contrast, data from files is first de-serialized and placed in
data structures before used in a process’ execution flow.

Finally, unlike PMOs, file data is managed directly by the
OS, any access (read/write) requires system calls, and the OS
can perform security checks when serving the system calls. In
contrast, PMO data can be manipulated directly by loads/stores
transparent to the OS.

The combination of longevity, direct byte-addressability and
uncoordinated shared access distinguishes PMOs from both
DRAM and traditional storage for memory protection, in terms
of vulnerability, consequences of security breaches, as well as
opportunities for novel solutions.

III. PREVIOUS WORK

Most prior studies focused on the security vulnerabilities of
PM fabric itself, rather than the PMO model. To address data
remanence due to non-volatility, PM encryption was proposed,
e.g. [8], [12], [13]. The limited write endurance of PM may
lead to early wear out if the attacker is allowed to write to them
excessively. Hence, preventing redundant writes [15] and wear
leveling are critical.

However, PM vulnerabilities go beyond just the fabric itself;
hosting persistent data as in the PMO model, introduces
new vulnerabilities while PM data is in active use. Memory
Exposure Reduction and Randomization (MERR) [4] protects
PMOs by reducing their exposure window (by attaching only
when needed for access and detaching afterward) and hence
the attack surface. They proposed splitting the page table
to accelerate attach, and PMO Space Layout Randomization
(PSLR), where the PMO is mapped to a different randomized
location at each attach. Another recent work [16] focuses on
mapping PMOs into separate domains, in order to leverage
domain protection such as Intel Memory Protection Key
(MPK). The intent was to restrict accesses to PMOs only to
threads that access them.

Both works [4], [16] seek to make unauthorized accesses to
PMOs difficult for the process accessing the PMO. However,
However, as discussed in Section VI, a vulnerable process with
legit access permissions can be used by an attacker to launch a
cross-process attack on a victim via shared PMO (i.e., accessed

84

Authorized licensed use limited to: University of Central Florida. Downloaded on January 14,2024 at 17:21:05 UTC from IEEE Xplore. Restrictions apply.

by two processes at different times). In doing so, PMO itself
becomes a new security vulnerability that can be exploited by
an attacker irrespective of other known vulnerabilities (e.g.,
buffer/integer overflow). This paper presents sample PMO-
based attacks and also briefly hints on mechanisms to detect
such attacks before they are activated (Section VI and VII).

IV. THREAT MODEL

We consider a threat model where two or more processes
share a PMO, attaching it at different times. One of the process
has no known memory safety vulnerabilities and is the process
that an adversary would like to attack. The other process has
memory safety vulnerabilities that the adversary can exploit.
We will refer to them as the victim and payload process. The
goal of an adversary is to use the payload process in order
to compromise the victim process. We assume the adversary
knows the fact that a PMO is shared by these two processes,
and knows the data structure and layout of the PMO. This
threat model is different from one assumed in [4], where they
assume a single process that is both the victim and payload.

We assume data structures in PMOs may contain buffers and
pointers and the payload process code may have regular known
vulnerabilities (e.g., buffer-overflow, integer overflow, format
string, etc.). We assume a trusted system software, such as the
OS, which manages address space isolation between processes.
PMOs are also managed by OS which applies permission
checking while granting access to a PMO. This implies that
access to a detached PMO is not permitted and results in
segmentation fault. However, a process can read and write
a legally attached PMO.

V. POINTER CLASSIFICATION

A PMO may hold a pointer-rich data structure, and the types
of pointers it holds affects their security implications. Pointers
can be categorized based on their direction (from volatile to
persistent memory and vice versa) and type of address they
hold (absolute or relative).

A. Direction-based pointer classification

Under the PMO programming model, persistent data resides
in OS-managed PMOs hosted in PM while non-persistent data
is placed in regular data structures in volatile memory (VM)
that will be cleared out upon process termination. Accordingly,
three pointer types are possible: VM2PM, PM2VM, and
PM2PM (i.e., intra and inter-PMO pointers).

1) VM2PM pointers: A VM2PM pointer is necessary for
normal operation of a PMO, for example a stack pointer that
points to a root pointer in a PMO. VM2PM pointers are
destroyed at process termination. The programmer needs to
ensure that a VM2PM pointer is dereferenced only when the
corresponding PMO is still attached to the process. Otherwise,
a segmentation fault is incurred. Furthermore, we assume that
only one process can attach a PMO at a given time. Hence,
dereferencing a VM2PM pointer by an unauthorized process
also results in segmentation fault.

2) PM2VM Pointers: Though in principle PM2VM pointers
can be created, they should not be permitted because similar
to a file, a PMO may be attached by multiple processes at
different times, and may outlast a process lifetime, hence
PM2VM pointers will not be valid across runs.

3) PM2PM Pointers: A PM2PM pointer can be one of two
types: An intra-PMO pointer that does not cross the PMO
boundary. It points to a location within the same PMO as the
one holding the pointer. Such pointers are essential to build
data structures (e.g a link list, skip list or tree) in a PMO. An
inter-PMOs pointer that crosses the PMO boundary. It points
to a location in a different PMO than the one holding the
pointer. Such pointers might seem unnecessary at first glance,
however they may be desired under certain situation.

Consider an example hash table that uses link lists to handle
collisions. Hash table and linked lists can be placed in a single
PMO as shown in Figure 1a. However, splitting them into
multiple PMOs confers two benefits: 1) permitting different
processes to attach and modify different lists concurrently, and
2) shortening the exposure window of PMO resident data. In
Figure 1a, the PMO1 must be attached (and hence hash table
and all linked lists are exposed) for the duration T1 + T2,
where T1 and T2 are the times for accessing the hash table
entry and traversing the linked list (of entry zero), respectively.
In contrast, the separate PMO approach (Figure 1a(b)) allows
PMO1 to be attached for only T1 and PMO2 for only T2

independently. This approach requires inter-PMO pointers.

0

1
2
3

N

Hash Table
∅

∅

∅
.
.

∅

∅

attach()
PMO1

detach()
PMO1

T1 T2

PMO1

(a)

0

1
2
3

N

Hash Table
∅

∅

.

.
∅

attach()
PMO1

detach()
PMO2

T1 T2

PMO1

detach()
PMO1

attach()
PMO2

PMO2

PMO4

∅
∅

PMO3

(b)

Fig. 1: Hash table and linked list placed in a) same PMO and
b) different PMOs.

B. Address-based pointer classification

Based on the addressing mechanism, either absolute or
relative pointers can be used to access PMOs and data-
structures they hold. An absolute pointer contains virtual
address, e.g. in Mnemsoyne [18] An absolute pointer is fast
to dereference because it relies on the traditional address
translation mechanism. However, it makes PMO Space Layout
Randomization [4] costly; any time the PMO is mapped to
a different virtual address region, pointers in the PMO must
be rewritten accordingly. Finally, if multiple processes are
allowed to simultaneously share a PMO, absolute pointers
require the PMO to be mapped to the same virtual address
range in all processes.

Alternatively, relative pointers can be used. A relative
pointer contains a combination of PMO ID and offset. A
relative pointer can use a regular 64-bit format or use a fat

85

Authorized licensed use limited to: University of Central Florida. Downloaded on January 14,2024 at 17:21:05 UTC from IEEE Xplore. Restrictions apply.

pointer format where a pointer is represented by multiple
fields. Figure 2 shows a regular relative pointer format where
32-bit PMO ID with 32-bit offset form a 64-bit pointer. In
order to dereference a pointer, a translation table is looked up
to translate the system-wide unique PMO ID to its base virtual
address [4], [19], and then the offset is added to it. Unlike
absolute pointers, relocating such PMOs is straightforward to
perform.

32-bit PMO ID 32-bit offset

Relative pointer

Fig. 2: Structure of a relative pointer [4], [19].

VI. ATTACK TYPES

Memory corruption attacks can be divide into two broad
categories: 1) control-data attacks that alter target program’s
control data (e.g., return address and function pointer) in order
to execute injected malicious code or stitched gadgets, and 2)
non-control-data attacks that depend on specific semantics of
target application and the source code to corrupt variety of
application data such as configuration data, user identification
data and decision-making data [20].

Since PMO data is long lived, a security attack in one run of
a process affects future runs of the process or other processes.
This section illustrates that an adversary can exploit a PMO
to launch cross-process/run control-data and non-control-data
attacks on a victim process under certain assumptions.

A. Control-Data Attacks

Figure 3a illustrates a PMO consisting of a main data
structure (a skip list) and a free list that manages free nodes
were deallocated. Skip pointers (of skip list) and next pointers
(of both skip list and free list) are shown by in red and black,
respectively. Data Structure Root (DSR) holds pointer to the
start of the skip list. The free list is a circular linked-list of
free nodes where separate head (H) and tail (T) pointers are
maintained. Nodes are allocated from head of the free list.

A security attack on the PMO may involve multiple steps
as shown in parts 3b-3f of Figure 3. In Step 1, an adversary
discovers a function pointer or return address (fp) in the
volatile memory portion of the victim process address space.
fp initially points to code N, and the code that the adversary
wants to execute is denoted as M. M may be an out-of-context
library code of victim process (as shown in Figure 3b) or code
injected by the adversary.

In Step 2 (Figure 3c), the adversary uses payload process to
attach the PMO, overwrite the forward pointer fd of first node
such that it points to M. Also, the tail pointer is overwritten
to point to location of fp minus a constant displacement ∆.
The displacement is equal to the difference between address
of a node and its fd pointer. 2 After this point, the adversary
persists the PMO, detaches it, and waits.

2In our example implementation of the attack, the constant displacement is
8 bytes.

A B C
DSR T

H

PMO

(a) PMO with skip list and free list.

Victim Process

fp

N

M

(b) Step 1: Address discovery.

A B C
DSR T

H

fp-Δ M
PMO

(c) Step 2: Exploit PMO.

A B C
DSR T

H

fp M
PMO

(d) Step 3: Activation.

1 //C points to fp-Disp
2 last_node=*T;
3 first_node=*H;
4 //makes FP point to M
5 last_node->fd=

first_node->fd;
6 *H=first_node->fd;

(e) Consolidation code.

Victim Process

fp
N

M

(f) Step 4: Seize control.

Fig. 3: PMO-based cross-process/run pointer redirection at-
tack.

When victim attaches the same PMO again (in the same
or a different run) and node A is allocated, the free list
consolidation code (Figure 3e) removes node A from the
list. Line 2 of the code gets last node by dereferencing T.
Since T was overwritten by adversary, last node points to
fp - ∆. The left side of the assignment statement in line 5,
last node→fd, points to a location at last node plus difference
between address of last node and its fd pointer: (fp-∆)+∆ =
fp. Since first node→fd was set by adversary to point to M,
line 5 makes fp point to M (Step 3, Figure 3d). Finally, when
the function pointer is used by the victim, the target code is
executed (Step 4, Figure 3f), resulting in a successful attack.
Such kind of attack can successfully alter the victim program’s
execution flow by invoking out-of-context or injected code M.

Note here is that despite not having an exploitable vulner-
ability, the victim process is successfully attacked because it
shares the PMO with another process that has an exploitable
memory vulnerability. The time to carry out the attack can
span multiple attach/detach sessions, and can even span across
multiple process lifetimes, as long as fp and M remain constant
over the span.

B. Non-Control-Data Attacks

The severity of non-control-data attacks is equivalent to that
of control-data attacks [20]. Examples attacks are denial of
service and attacks based on corrupting decision-making data.
Such attacks can be set up by an adversary using a similar
approach as shown in Section VI-A.

86

Authorized licensed use limited to: University of Central Florida. Downloaded on January 14,2024 at 17:21:05 UTC from IEEE Xplore. Restrictions apply.

1) Denial of Service Attack: A denial of service attack
causes a victim process to produce wrong output, crash,
or hang [24]. Figure 4 illustrates such an attack where an
adversary uses the payload process to attach a PMO, set DSR
and H pointers (in PMO) to null, persist the updates, and
detach the PMO. Then adversary waits for the victim to attach
again the same PMO (in the same or different run) and access
the skip list or free list. When that happens, victim process
crashes as result of segmentation fault.

A B C
DSR T

H

(a) PMO with skip list and free list.

A B C
T∅
∅

(b) DSR & H set to null.

Fig. 4: PMO-based cross-process/run denial of service attack.

2) Attack corrupting decision-making data: Decision-
making routines rely on several boolean variables (conjunc-
tion, disjunction, or combination of both) to reach the final
verdict. An adversary can corrupt the values of these decision-
making data to influence the eventual critical decision [20].

As an example from real application, Figure 5 shows a
code snippet from ZRANGE min max BYSCORE command
of REDIS [21], [22]. The code iterates over elements (shown
as ln in the snippet) of a skip list and returns all the elements in
the sorted set with a score between min and max. For example,
invocation of ZRANGE 4 8 BYSCORE on the PMO shown in
Figure 6a prints scores 4, 4, 6, 8.

Figure 6b shows an attack where an adversary uses a
payload process to attach the PMO, corrupt the data by
overwriting value of a skip list node from 6 to 9 (shown
in red), persist the updates and detache the PMO. When the
victim process, after attaching again the same PMO, invokes
ZRANGE, the command returns only 4, 4 (instead 4, 4, 6, 8).

VII. POSSIBLE DEFENSES

Some of the attacks presented in Section VI can be mitigated
by applying existing defenses. For example, the pointer redi-
rection attack presented in Figure 3 can be successful only if
addresses of fp and M (out-of-context code in victim process)
are not changed between two successive runs of the victim
process. If PSLR is enabled, the addresses of fp and M will
be randomized on subsequent run and hence attack will fail to
change the execution flow of victim. Similarly, with M as a
code injected by adversary, the attack can be successful only
if Data Execution Prevention (DEP) is not supported on the
execution platform.

Some attack frameworks can breach PSLR or DEP defense
schemes [23], [27]. Also, denial of service and (PMO-resident)
data corrupting attacks are agnostic to PSLR and DEP. There-
fore, additional steps are needed to detect and foil PMO-based
attacks.

Figure 7 shows the timeline of the steps in the PMO-based
pointer redirection attack (presented in Figure 3), illustrating a

1 while (ln && limit--) {
2 /* Abort when score of the node is no

longer in range. */
3 if (reverse) {
4 if (!zslValueGteMin(ln->score,range))

break;
5 } else {
6 if (!zslValueLteMax(ln->score,range))

break;
7 }
8

9 rangelen++;
10 /* Send score to the handler */
11 handler->emitResultFromCBuffer(handler, ln

->ele, sdslen(ln->ele), ln->score);
12

13 /* Move to next node */
14 if (reverse) {
15 ln = ln->backward;
16 } else {
17 ln = ln->level[0].forward;
18 }
19 }

Fig. 5: A code snippet from ZRANGE command of REDIS
[22]

A B C
DSR T

H

0

0 2

4

4 6

8

(a) PMO with skip list and free list.

A B C
DSR T

H

0

0 2

4

4

8

9

(b) PMO data corruption.

Fig. 6: PMO-based attack to corrupt decision-making data.

PMO shared successively by two processes. The figure shows
opportunities for detecting and foiling the attack.

VictimVictim Payload
Time
line

Step 1 Step 2 Step 3 Step 4

Address of fp and M must not change

Window to verify PMO integrity

Window to
rollback PMO

Window to
block victim

Fig. 7: Steps of cross-process/run PMO-based pointer redirec-
tion attack.

First, address of fp and M must remain the same between
Step 1 and 3, for the attack to succeed. If the addresses change,
the attack will corrupt PMO but not result in control flow
hijacking. Second, the window of time between Step 2 and 4
is the window of opportunity to detect the attack by verifying
the integrity of the data structures in the PMO. In other
words, the integrity check must be performed before step 4 as
the potential attacks get activated by that time. The integrity
of data structure(s) can be checked by performing topology
verification [25]. Third, in the window of time between Step

87

Authorized licensed use limited to: University of Central Florida. Downloaded on January 14,2024 at 17:21:05 UTC from IEEE Xplore. Restrictions apply.

2 and 3, if PMO integrity problem is detected, and a non-
corrupted previous version is restored, the PMO integrity can
be restored and attack foiled. But, between Steps 3 and 4, to
foil the attack, the victim process must be blocked/terminated.

Denial of service and data corrupting attacks (presented in
Figure 4 and 6, respectively) overwrite the PMO-data instead
of pointers. To detect such attacks, data integrity check (e.g.,
calculating and comparing against stored SHA256 hash code)
is needed before a process accesses PMO-resident the data.

To foil the attack where new hash code is computed after
corrupting data and stored in PMO, data invariance checks
can be performed. For example, a PMO can be screened to
ensure that data structure root (DSR) and head/tail pointers of
free-list are not null. Similarly, data semantics may also be
used for invariance checks, e.g. the values of skip list nodes
must be monotonically increasing or decreasing. Depending
on the application, several other data invariance checks can
be applied [26]. Note that applying larger number of data
invariance checks increases the probability to foil non-control-
data attacks but at the cost of higher overhead of invariance
checking.

Table I summarizes PMO-based attacks mentioned above,
assumptions for setting up those attacks and strategies to detect
them.

TABLE I: Summary of PMO attacks

Attack Assumptions Detection strategy

Pointer redirection to
out-of-context code

No PSLR
PM2NVM pointers

are permitted

Topology
verification

Pointer redirection to
injected code

No PSLR
No DEP

PM2NVM pointers
are permitted

Topology
verification

Denial of service Hash re-computation
and comparison

Corrupting
decision-making data

Data
invariance checking

VIII. CONCLUSION

In this paper, we have shown that multiple processes may
access persistent data in an uncoordinated way under PMO
programming model. This makes PMOs a new tool for launch-
ing security attacks. We demonstrated PMO-based control-data
and non-control-data attacks, and possible defenses. This paper
makes the case for increased memory safety protection when
persistent memory is used.

REFERENCES

[1] Intel, “Intel® Optane™ DC Persistent Memory,” Available
at https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html (2021/07/21).

[2] H. Taeho, L. Dokeun, N. Yeonjin, W.Youjip, “Designing persistent heap
for byte addressable NVRAM,” In 2017 IEEE 6th Non-Volatile Memory
Systems and Applications Symposium (NVMSA) 2017 Aug 16 (pp. 1-
6). IEEE.

[3] K. Sudarsun, G. Ada, S. Karsten, “PVM: Persistent virtual memory
for efficient capacity scaling and object storage,” In Proceedings of the
Eleventh European Conference on Computer Systems 2016 Apr 18 (pp.
1-16).

[4] X. Yuanchao, S. Yan, S. Xipeng, “MERR: Improving security of
persistent memory objects via efficient memory exposure reduction
and randomization,” In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems 2020 Mar 9 (pp. 987-1000).

[5] D. Subramanya R et al, “System software for persistent memory,” In
Proceedings of the Ninth European Conference on Computer Systems
2014 Apr 14 (pp. 1-15).

[6] C. Jeremy et al, “Better I/O through byte-addressable, persistent mem-
ory,” In Proceedings of the ACM SIGOPS 22nd symposium on Operat-
ing systems principles 2009 Oct 11 (pp. 133-146).

[7] X. Jian, S. Steven, “NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories,” In 14th USENIX Conference on
File and Storage Technologies (FAST 16) 2016 (pp. 323-338).

[8] C. Siddhartha, S. Yan, “i-NVMM: A secure non-volatile main memory
system with incremental encryption,” In 2011 38th Annual international
symposium on computer architecture (ISCA) 2011 Jun 4 (pp. 177-188).
IEEE.

[9] L. Youyou, S. Jiwu, S. Long, M. Onur, “Loose-ordering consistency for
persistent memory,” In 2014 IEEE 32nd International Conference on
Computer Design (ICCD) 2014 Oct 19 (pp. 216-223). IEEE.

[10] P. Steven, MC. Peter, FW. Thomas, “Memory persistency,” In 2014
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA) 2014 Jun 14 (pp. 265-276). IEEE.

[11] R. Andy, “Persistent memory programming,” Login: The Usenix Mag-
azine. 2017;42(2):34-40.

[12] Z. Pengfei, H. Yu, “SecPM: a secure and persistent memory system for
non-volatile memory,” In 10th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 18) 2018.

[13] Z. Pengfei, H. Yu, X. Yuan, “Supermem: Enabling application-
transparent secure persistent memory with low overheads,” In Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture 2019 Oct 12 (pp. 479-492).

[14] Y. Mao, AZ. Kazi, M. Aziz, A. Amro, “Towards low-cost mechanisms
to enable restoration of encrypted non-volatile memories,” IEEE Trans-
actions on Dependable and Secure Computing. 2019 Sep 13.

[15] M. Sparsh, IA. Ahmed, “A survey of techniques for improving security
of non-volatile memories,” Journal of Hardware and Systems Security.
2018 Jun;2(2):179-200.

[16] X. Yuanchao, Y. ChenCheng, S. Yan, S. Xipeng, “Hardware-based
domain virtualization for intra-process isolation of persistent memory
objects,” In 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA) 2020 May 30 (pp. 680-692). IEEE.

[17] (SNIA), S. N. I. A. Persistent memory hardware threat model. Technical
Whitepaper (2018).

[18] V. Haris, JT. Andres, MS. Michael Swift M, “Mnemosyne: Lightweight
persistent memory,” ACM SIGARCH Computer Architecture News.
2011 Mar 5;39(1):91-104.

[19] W. Tiancong, S. Sakthikumaran, S. Yan, T. James, “Hardware supported
persistent object address translation,” In 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO) 2017 Oct 14
(pp. 800-812). IEEE.

[20] C. Shuo, X. Jun, CS. Emre, G. Prachi, KI. Ravishankar, “Non-Control-
Data Attacks Are Realistic Threats,” In USENIX Security Symposium
2005 Aug (Vol. 5).

[21] Redis, “ZRANGE - Redis,” Available at
https://redis.io/commands/zrange (2021/07/20).

[22] Redis, “redis/t zset.c at unstable . redis/redis . Gitub,” Available at
https://github.com/redis/redis/blob/unstable/src/t zset.c (2021/07/20).

[23] B. Dion, “Interpreter exploitation: Pointer inference and JIT spraying,”
BlackHat DC. 2010 Jan.

[24] MM. Kharbutli, “Improving the security of the heap through inter-
process protection and intra-process temporal protection,” North Car-
olina State University; 2005.

[25] C. Bor-Yuh Evan, R. Xavier, N. George C, “Shape analysis with struc-
tural invariant checkers,” In International Static Analysis Symposium
2007 Aug 22 (pp. 384-401). Springer, Berlin, Heidelberg.

[26] DE. Michael et al, “The Daikon system for dynamic detection of likely
invariants,” Science of computer programming. 2007 Dec 1;69(1-3):35-
45.

[27] ZS. Kevin et al, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” In 2013 IEEE Symposium
on Security and Privacy 2013 May 19 (pp. 574-588). IEEE.

88

Authorized licensed use limited to: University of Central Florida. Downloaded on January 14,2024 at 17:21:05 UTC from IEEE Xplore. Restrictions apply.

