A brief primer on Persistent Memory Objects

Derrick Greenspan Naveed Ul. Mustafa Zoran Kolega Mark Heinrich Yan Solihin

University of Central Florida, Orlando, Florida
{derrick.greenspan, unknown.naveedulmustafa, heinrich, yan.solihinl@ucf.edu
kolegazoran@knights.ucf.edu

Introduction to Persistent Memory (PM) Basic PMO Design Principles Evaluation Methodology
» Byte Addressable Fast Access Evaluated Designs
= Non-Volatile/Persistent * Simple PMO System layout NG Crash Consi 4-d
= High density/cheaper per byte vs. volatile memory (i.e., DRAM) - NG IS CEmSEIOUS TR OF Mo . . 0 Crash Consistency (ext4-dax)
.] = Metadata entries located at start of PM and store state information = State-of-the-art crash consistent filesystem (Nova-Fortis)
= Performance much closer to volatile memory vs. block storage (i.e., SSD) = Data can be accessed by adding given offset to base-address of PMO Persistent M Object System (PMO System)
= Could augment or replace volatile memory as main memory = Obviates the need for pointer chasing ersistent Miemory Lbject System ystem
= Low-latency attach/detach calls
= Use demand paging to only map required pages at fault time Evaluated Benchmarks
PM Management = Only change permission of faulted pages at detach time (rather than unmap them entirely)
= Low-latency Pointer Dereference = Microbenchmarks
= Use static pointers that point directly to unique PM addresses « LU Decomposition (LU) - 3584 x 3584 doubles
Memory-Mapped Files = Split address space in half so that virtual addresses with MSB of 1 reference PMOs = 2D-Convolution (2DConv) - 4096 x 128 integers
. = Tiled Matrix Multiplication (TMM) - 3072 x 3072 integers
= Organize PM as a file system Crash Consistent = FileBench benchmarks
= Limits the use of svstem calls _ . = Representations of real-world applications
4 . Data are consistent even after crash = File Server (FS), Web Server (WS), Web Proxy (WP), Var Mail (VM)
= Keeps data as an array of bytes rather than pointers = Create shadow copy at attach
= Requires keeping two systems (file system and virtual memory) consistent despite distinct " Render chgnges crash consistent Via psync
semantics = Copy modified shadow pages —primary pages Results
Persistent Memory Objects (PMOs . Microbenchmarks
Yol () PMO state transitions
= Organize PM as a collection of objects (PMOs) holding pointer-rich data structures = PMOs are only 27.8% slower than a system without crash consistency
= No file backing = PMO recovery depends on the PMO state, as illustrated in Figure 2 = PMOs are 1.61 x faster than Nova-Fortis
= More intuitive design = Invariant: At least one of the primary or shadow copy are always valid
= Recovery restores from that copy based on state Filebench
PMO System Calls Encrypting Primary Encrypting Shadow = PMOs have 18.3% lower bandwidth than a system without crash consistency
Persisting Shad into Shadow into Primary _, - : : :
o o ~ersisting shadow P . v = PMOs have 3.2x higher bandwidth over NOVA-Fortis
Primitive Description \Copy \ ‘s . '
Render accessible the PMO iven a valid key with permissions ' ' ' Copying Shadow -’
attach(name,perm key) . name, & °J P 2 S ’ toPrimary INCCliPMOIINOVA-Fortis INCCliPMOIINOVA-Fortis
perm, and return a pointer to the start of the PMO. psync() Encryption y
detach(addr) Render inaccessible the PMO addr points to. : ! Complete Rl 5 — — = - — — —
psync(addr) Force modifications to the PMO associated with addr to be durable. - ' e .’ = < m
.) NS) ’ © = U i i
pcreate(name,size key) | Create a PMO name of size and key. ' & e 2 | 2 .’ Z o 'g =
pdestroy(name,key) Given a valid key, delete PMO name and reclaim its space. ! ‘E”; :8 IS RS ,/ cc% A " B e =l B B .
! % '§ © : 3 o’ 3 3 ©
! -g U : % ’ ‘ % | m]] | RRSR
Threat Mode'_ ! o . . : ,’ . 7 7 | 7 7| 7 7 |
I"’ L Decryption ¢ .’ detach() LU 2D TMM G FS VM WP WS G
Assumptions oo (- go_m_pl_et_e'7 pr— @ e R (a) Microbenchmark performance results (b) Filebench bandwidth results
. . h dcoptylng' - ! Degry-ptlng psynC() 1
= PMO is not attached to any user process (i.e., "at-rest”) SHadow o primary Primary | Integrity and Encryption
= PMO-resident data structures may contain buffers/pointers L nto Shadow _Cfp_y_cfn_m_le_te_’ ?tt_a(ihfr)_ _______ ! . .
* Only the Kernel Crypto API, memcpy/memset, and PMO subsystem are assumed free of . EncryPhon Iow.ers bandwidth by 417 Of] Average
vulnerabilities Figure 2. PMO state transitions. Dashed are for the crash consistent design without encryption. Dotted are for the * Integrity Checking alone lowers bandwidth by 3% on average
- Attacker knows location of PMO in system crash consistent design with encryption. Solid are for both. = Both Encryption and Integrity Checking lowers bandwidth by 46% on average
)) IBASENINTHENCHRINT+ENC
Goal of Attacker Security Protection For At-Rest PMOs * * *
c T
= Disclose private data held in at-rest PMO (Figure 1) . . 5 2
, , , - Protection from Corruption T =
= Overwrite data held in at-rest PMO with malicious data S e
= Compute checksum over PMO at detach time 55
Physical Memory = Store checksum in associated PMO metadata entry o c | ,, |
PMO Hashtable e e e eenoenoiii il : . . oy _ o . | S | | S
T év(g.;l:tl:rygm)y 5222‘?'3 Opiane FVEi S Compare computed checksum at attach with stored checksum, attach fails if different FS WS WP VM GM
| <\,§) irlg_e_:_rn_e_:_l_Ac!_c_l_rg_s_s__S_pg_c_e_:___j’*_f;;.?;;i;j'_i Protection from Disclosure Figure 4. Bandwidth comparison of attach/detach PMO, with different modes: baseline (BASE), Integrity (INT),
e e e e e = Use Kernel Crypto API to decrypt PMO when in use (i.e., attached) Encryption (ENC), and both (ENC+INT).
Physical Address: 0x120000 (b) Step 2: Map physical memory into

= Use kernel Crypto API to encrypt PMO when at rest (i.e., detached)
= Do not store encryption key alongside PMO; key is provided by user at attach
Physical Memory = Encryption/Decryption not atomic, so must add new states (see 2)

Kernel Address Space . A et , i i
pTTTTIT T e Friiniy ; Volatile Memory :intel Optane PMEM {227 = Never perform encryptlon in place

This work is supported in part by the Office of Naval Research (ONR) under grant NO0014-20-1-
L R 2750, and the National Science Foundation (NSF) under grant 1900724.

(a) Step 1: Discover PMO address. kernel space.
Acknowledgements

SR (d) Step 4: Unmap kernel space
(c) Step 3: Read mapped data. memory.

Figure 1. Steps of PMO example attack.

http.//nvmw.ucsd.edu/ 14th Annual Non-Volatile Memories Workshop, San Diego, California University of California at San Diego, March 13-14, 2023

http://nvmw.ucsd.edu/

