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1 Motivation

Persistent Memory Objects (PMOs) are the state-of-the-art OS-
based approach for persistent memory (PM) management. Recent
PMO designs have limited performance due to the properties of the
PM substrate and the requirement that persistent data be secure
and robust against corruption.
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Figure 1: Microbenchmarks [2] scalability by thread count us-
ing PM (with the x-axis representing the number of threads).

To analyze this problem, we evaluated the state-of-the-art LOaAPP
PMO design [4] in a real system with Intel Optane Pmem. We ran
four benchmark applications: 2d Convolution, Gaussian Elimina-
tion, LU Decomposition, and Tiled Matrix Multiplication, varying
the number of threads from 1 to 16. Figure 1 shows the speedup
ratios of several benchmarks from 1 to 16 threads with the state-
of-the-art Linux-based PMO [4]. Except for 2d Convolution, which
is not particularly memory intensive, all benchmarks show poor
speedup scaling, e.g. only ~ 3X at 16 threads for LU. We solved
this problem via our LPMO design, which achieves up to 1.25%
speedup over a state-of-the-art PMO. When combined with page
prediction, the speedup improves further to 1.81X. In CXL-memory
configurations, LPMO can improve the performance by up to 3x
compared to the local PM-based PMO systems, despite the added
latency of CXL.

2 Threat and Trust Model

Similar to files, PMOs keep persistent data for a long time, and
most of them will spend most of their lifetime at rest. Our threat
model assumes the attacker’s goal is to either reveal or tamper with
the confidential data belonging to a user-process stored within an
at-rest PMO.

One attack we consider is data remanence, where a stolen or
improperly disposed of PM may be analyzed by the attacker to

Naveed Ul Mustafa
num@nmsu.edu
New Mexico State University
Orlando, Florida, United States

Mark Heinrich
heinrich@ucf.edu
University of Central Florida
Orlando, Florida, United States

Jongouk Choi
jongouk.choi@ucf.edu
University of Central Florida
Orlando, Florida, United States

obtain sensitive data. Such attacks have long been documented for
files in hard drives [7] and prompted filesystem encryption which
is widely used today. Likewise, PMO encryption was motivated by
the same concerns [4].

Another attack we consider has the adversary compromise a
user account to steal or corrupt PMO data. But without having the
correct key, the attacker cannot read the plaintext of PMO data, or
modify PMO data without being discovered later. PMO encryption
keys can be further managed by a Trusted Platform Module (TPM)
to avoid the attacker reading keys from memory.

Our trust is limited to specific components of the system soft-
ware, Linux Kernel Crypto API [1], crucial kernel memory functions
like memcpy and memset, and our PMO kernel subsystem.

In an unprotected system, the attack proceeds as follows: 1) The
attacker discovers the physical address (PA) of the PMO. 2) The
attacker maps the PMO to its address space, and 3) performs the
attack by either corrupting the PMO by writing incorrect data,
which will not be caught in the absence of integrity verification [5],
or alternatively, in the absence of encryption, the attacker can read
from the PMO and steal secrets from it. In either case, the attacker
is able to do these actions silently, by simply 4) unmapping the
address space of the PMO from the attacker process’s address space,
which leaves no evidence that the PMO was accessed or modified.

3 LPMO Design

3.1 DRAM Shadow Paging

Prior PMO systems placed each PMO entirely in the PM, both
shadow and primary pages. While in this approach the PMO retains
data on power loss (or crashes), it suffers from high access latencies
(especially writes) and low write bandwidth. Furthermore, a typical
memory system with PM has a mixture of DRAM and PM, and
the DRAM is underutilized. We propose a solution where shadow
pages are placed in DRAM, while primary pages are placed in PM.
Only shadow pages are lost on a crash.

Although our approach incurs a risk of data loss; as long as the
data loss is limited to any modifications after the last successful
psync(), the semantics are not violated. Our solution requires that
shadow pages are merged into the primary pages on psync. The
cost of this is that psync takes slightly longer to complete, but psync
occurs less often than writes. Also, for encryption, we keep the
shadow in plaintext while the primary is in ciphertext. The cost is
minor: a psync involves encrypting the shadow into the primary
instead of copying it.


https://dl.acm.org/doi/full/10.1145/3721145.3734533

3.2 Page Access Prediction

While DRAM shadow paging helps performance, accessing the page
for the first time still requires a page fault (to place the shadow
page into DRAM), decryption, and integrity verification. Together,
these incur a substantial critical-path delay that places an upper-
bound on performance improvements. To tackle this problem, we
propose predicting access patterns, decrypting them into DRAM,
and verifying their integrity ahead of time.

For this to work, the predictor should be lightweight and fast
at generating predictions, and yet also achieve high accuracy, cov-
erage, and timeliness. To satisfy this, we use a page-usage pattern
predictor based on stream buffers [6].

3.3 CXL design

We envision that the LPMO abstraction can be applied both to local
and CXL-attached PM systems, enabling new memory hierarchies.
Some examples are: a CXL PM device without a DRAM cache, a
CXL PM device with a local DRAM cache, and a CXL PM device
with DRAM also attached to it. These are reflected as L (for local),
F (for far) and D (for DRAM) in Figure 4.

We also utilize enhanced memory functions (EMFs) to simulate
hardware-based support for PMO functions, such as encryption
and integrity verification. We will test this in our evaluation and
apply a 1% overhead to attach and psync.

4 Evaluation

We evaluated LPMO with a system that consists of a dual socket
Supermicro X11DPi-NT, two Xeon Gold 6230s, and four 128GiB
Optane memory sticks. We use the microbenchmarks described in
Section 1. Our legend is depicted in Figure 2.
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Figure 2: Microbenchmark Legend

4.1 LPMO Performance

Figure 3 compares the execution times of various microbenchmarks
and their average for the state-of-the-art GPMO system. O is the
original GPMO design, D adds DRAM without prediction, and the
numbers after D are the prediction depth. Our scheme reduces
execution time by ~ 21% on average, due to a reduction in the page
fault delay. The performance impact of Integrity Verification is also
lessened, and in some cases completely eliminated, when using
DRAM and predictive encryption together.

4.2 CXL Performance

Figure 4 demonstrates the latency of encryption and integrity ver-
ification of a CXL device. We find that despite the added latency
of CXL, the LPMO abstraction has performance comparable to,
and sometimes faster than, the prior most-performant PMO design.
Note that for LU, the page fault overhead (from faulting unneces-
sary pages) is very high for our CXL system at a depth of 8, which
is likely because of the added latency of CXL NUMA nodes and the
fact that LU is heavily memory bound.
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Figure 3: Execution time with and without DRAM prediction.
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Figure 4: CXL Microbenchmark Evaluation
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